diff --git a/scripts/run_1.07G_dp1_tp8_pp1_acc1_mbs1_seq131072_zero0_tpmodeRED_l15_h2048_heads16.sh b/scripts/run_1.07G_dp1_tp8_pp1_acc1_mbs1_seq131072_zero0_tpmodeRED_l15_h2048_heads16.sh new file mode 100644 index 0000000000000000000000000000000000000000..408cb9b61255a158c0f45201780a4166c0c4f1d7 --- /dev/null +++ b/scripts/run_1.07G_dp1_tp8_pp1_acc1_mbs1_seq131072_zero0_tpmodeRED_l15_h2048_heads16.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.07G_dp1_tp8_pp1_acc1_mbs1_seq131072_zero0_tpmodeRED_l15_h2048_heads16 # Job name +#SBATCH --time=00:15:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.07G_dp1_tp8_pp1_acc1_mbs1_seq131072_zero0_tpmodeRED_l15_h2048_heads16.yaml diff --git a/scripts/run_1.14G_dp128_tp4_pp1_acc2_mbs2_seq2048_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp128_tp4_pp1_acc2_mbs2_seq2048_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..f178b1e5a747ef368cd7f719a9c65e82dae0d83b --- /dev/null +++ b/scripts/run_1.14G_dp128_tp4_pp1_acc2_mbs2_seq2048_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp128_tp4_pp1_acc2_mbs2_seq2048_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp128_tp4_pp1_acc2_mbs2_seq2048_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp16_tp8_pp1_acc8_mbs16_seq2048_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp16_tp8_pp1_acc8_mbs16_seq2048_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..5decbac1d1d636d09bdeac33da416a95611e6526 --- /dev/null +++ b/scripts/run_1.14G_dp16_tp8_pp1_acc8_mbs16_seq2048_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp16_tp8_pp1_acc8_mbs16_seq2048_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp16_tp8_pp1_acc8_mbs16_seq2048_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp1_tp8_pp1_acc1_mbs64_seq2048_zero0_tpmodeALL_vocab32k_prof.sh b/scripts/run_1.14G_dp1_tp8_pp1_acc1_mbs64_seq2048_zero0_tpmodeALL_vocab32k_prof.sh new file mode 100644 index 0000000000000000000000000000000000000000..e2af65b79d9e7e39a100ee7f05cb0e13fa0f39ab --- /dev/null +++ b/scripts/run_1.14G_dp1_tp8_pp1_acc1_mbs64_seq2048_zero0_tpmodeALL_vocab32k_prof.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp1_tp8_pp1_acc1_mbs64_seq2048_zero0_tpmodeALL_vocab32k_prof # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp1_tp8_pp1_acc1_mbs64_seq2048_zero0_tpmodeALL_vocab32k_prof.yaml diff --git a/scripts/run_1.14G_dp2_tp128_pp1_acc8_mbs2_seq32768_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp2_tp128_pp1_acc8_mbs2_seq32768_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..01d4018472845906ca81dd94225438af612e0a43 --- /dev/null +++ b/scripts/run_1.14G_dp2_tp128_pp1_acc8_mbs2_seq32768_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp2_tp128_pp1_acc8_mbs2_seq32768_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp2_tp128_pp1_acc8_mbs2_seq32768_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp2_tp16_pp1_acc8_mbs8_seq8192_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp2_tp16_pp1_acc8_mbs8_seq8192_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..3820044883cf893e3cbe2e62909d8e2334ce9b09 --- /dev/null +++ b/scripts/run_1.14G_dp2_tp16_pp1_acc8_mbs8_seq8192_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp2_tp16_pp1_acc8_mbs8_seq8192_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp2_tp16_pp1_acc8_mbs8_seq8192_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp2_tp256_pp1_acc4_mbs16_seq32768_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp2_tp256_pp1_acc4_mbs16_seq32768_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..d735c82f7499acb4d3910da517b689b1ab7b3551 --- /dev/null +++ b/scripts/run_1.14G_dp2_tp256_pp1_acc4_mbs16_seq32768_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp2_tp256_pp1_acc4_mbs16_seq32768_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp2_tp256_pp1_acc4_mbs16_seq32768_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp2_tp64_pp1_acc256_mbs4_seq2048_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp2_tp64_pp1_acc256_mbs4_seq2048_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..6624c98e06d77ceec088008df4deeb9139c57bdd --- /dev/null +++ b/scripts/run_1.14G_dp2_tp64_pp1_acc256_mbs4_seq2048_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp2_tp64_pp1_acc256_mbs4_seq2048_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp2_tp64_pp1_acc256_mbs4_seq2048_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp32_tp16_pp1_acc16_mbs1_seq8192_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp32_tp16_pp1_acc16_mbs1_seq8192_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..59dc0a8de24ceddc71b9dac979dae43e2aa1df93 --- /dev/null +++ b/scripts/run_1.14G_dp32_tp16_pp1_acc16_mbs1_seq8192_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp32_tp16_pp1_acc16_mbs1_seq8192_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp32_tp16_pp1_acc16_mbs1_seq8192_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp32_tp1_pp2_acc8_mbs2_seq2048_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp32_tp1_pp2_acc8_mbs2_seq2048_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..41627a28f77ac17ebe6a12971c2638c4b427aad8 --- /dev/null +++ b/scripts/run_1.14G_dp32_tp1_pp2_acc8_mbs2_seq2048_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp32_tp1_pp2_acc8_mbs2_seq2048_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp32_tp1_pp2_acc8_mbs2_seq2048_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp32_tp8_pp1_acc32_mbs2_seq2048_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp32_tp8_pp1_acc32_mbs2_seq2048_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..eef0f0b826e0c0490150eb9163a03f994e0b1d45 --- /dev/null +++ b/scripts/run_1.14G_dp32_tp8_pp1_acc32_mbs2_seq2048_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp32_tp8_pp1_acc32_mbs2_seq2048_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp32_tp8_pp1_acc32_mbs2_seq2048_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp4_tp32_pp1_acc4_mbs128_seq2048_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp4_tp32_pp1_acc4_mbs128_seq2048_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..686d1dbdfcba362bfb7dc0cc525901f5e2b78a48 --- /dev/null +++ b/scripts/run_1.14G_dp4_tp32_pp1_acc4_mbs128_seq2048_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp4_tp32_pp1_acc4_mbs128_seq2048_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp4_tp32_pp1_acc4_mbs128_seq2048_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp4_tp4_pp1_acc16_mbs8_seq8192_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp4_tp4_pp1_acc16_mbs8_seq8192_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..8926d7c2987f51a26dc93e7ab374c28026376271 --- /dev/null +++ b/scripts/run_1.14G_dp4_tp4_pp1_acc16_mbs8_seq8192_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp4_tp4_pp1_acc16_mbs8_seq8192_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=2 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp4_tp4_pp1_acc16_mbs8_seq8192_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp4_tp4_pp1_acc256_mbs2_seq2048_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp4_tp4_pp1_acc256_mbs2_seq2048_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..bc081d520034c860ce7dbe5e2cb758a270a89296 --- /dev/null +++ b/scripts/run_1.14G_dp4_tp4_pp1_acc256_mbs2_seq2048_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp4_tp4_pp1_acc256_mbs2_seq2048_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=2 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp4_tp4_pp1_acc256_mbs2_seq2048_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp4_tp4_pp1_acc8_mbs1_seq32768_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp4_tp4_pp1_acc8_mbs1_seq32768_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..1ca8b1de9fe8dee93ffe69e6ea177df91121427a --- /dev/null +++ b/scripts/run_1.14G_dp4_tp4_pp1_acc8_mbs1_seq32768_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp4_tp4_pp1_acc8_mbs1_seq32768_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=2 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp4_tp4_pp1_acc8_mbs1_seq32768_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp64_tp4_pp1_acc1_mbs2_seq32768_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp64_tp4_pp1_acc1_mbs2_seq32768_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..69abdbc9e1adddebe86c6938c7cc6030455479a0 --- /dev/null +++ b/scripts/run_1.14G_dp64_tp4_pp1_acc1_mbs2_seq32768_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp64_tp4_pp1_acc1_mbs2_seq32768_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp64_tp4_pp1_acc1_mbs2_seq32768_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp8_tp16_pp1_acc64_mbs4_seq2048_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp8_tp16_pp1_acc64_mbs4_seq2048_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..3c9f75cb371bd97f8e1f126c7095ddced8d3df05 --- /dev/null +++ b/scripts/run_1.14G_dp8_tp16_pp1_acc64_mbs4_seq2048_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp8_tp16_pp1_acc64_mbs4_seq2048_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp8_tp16_pp1_acc64_mbs4_seq2048_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp8_tp1_pp1_acc16_mbs1_seq8192_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp8_tp1_pp1_acc16_mbs1_seq8192_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..6fbb3b1903c085e7687e5447054945fdbd17da88 --- /dev/null +++ b/scripts/run_1.14G_dp8_tp1_pp1_acc16_mbs1_seq8192_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp8_tp1_pp1_acc16_mbs1_seq8192_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp8_tp1_pp1_acc16_mbs1_seq8192_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp8_tp1_pp1_acc8_mbs2_seq8192_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp8_tp1_pp1_acc8_mbs2_seq8192_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..e86c92240e245d9bbf50234960ca07028555d8f8 --- /dev/null +++ b/scripts/run_1.14G_dp8_tp1_pp1_acc8_mbs2_seq8192_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp8_tp1_pp1_acc8_mbs2_seq8192_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp8_tp1_pp1_acc8_mbs2_seq8192_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp8_tp32_pp1_acc32_mbs8_seq2048_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp8_tp32_pp1_acc32_mbs8_seq2048_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..95f74294cfb9ad0bbcbc95f8b4c88d7beb4b51cc --- /dev/null +++ b/scripts/run_1.14G_dp8_tp32_pp1_acc32_mbs8_seq2048_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp8_tp32_pp1_acc32_mbs8_seq2048_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp8_tp32_pp1_acc32_mbs8_seq2048_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp8_tp4_pp1_acc2_mbs128_seq2048_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp8_tp4_pp1_acc2_mbs128_seq2048_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..6e4c530c6bf8fc86dfef9624a7e83d84f7592a7c --- /dev/null +++ b/scripts/run_1.14G_dp8_tp4_pp1_acc2_mbs128_seq2048_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp8_tp4_pp1_acc2_mbs128_seq2048_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp8_tp4_pp1_acc2_mbs128_seq2048_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp8_tp4_pp1_acc2_mbs8_seq32768_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp8_tp4_pp1_acc2_mbs8_seq32768_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..8fd787956ceccd8064c0d18bb27f8e9acf4b4ad8 --- /dev/null +++ b/scripts/run_1.14G_dp8_tp4_pp1_acc2_mbs8_seq32768_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp8_tp4_pp1_acc2_mbs8_seq32768_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp8_tp4_pp1_acc2_mbs8_seq32768_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp8_tp8_pp1_acc1_mbs16_seq8192_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp8_tp8_pp1_acc1_mbs16_seq8192_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..0f29d2590cd71863209eb73607012207af6b8aeb --- /dev/null +++ b/scripts/run_1.14G_dp8_tp8_pp1_acc1_mbs16_seq8192_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp8_tp8_pp1_acc1_mbs16_seq8192_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp8_tp8_pp1_acc1_mbs16_seq8192_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.34G_dp128_tp2_pp1_acc1_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp128_tp2_pp1_acc1_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..1c53b38576533059b299764726c0f5a4e1a4f808 --- /dev/null +++ b/scripts/run_1.34G_dp128_tp2_pp1_acc1_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,124 @@ +#!/bin/bash +#SBATCH --job-name=bench_1.34G_dp128_tp2_pp1_acc1_mbs2_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_1.34G_dp128_tp2_pp1_acc1_mbs2_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp128_tp2_pp1_acc1_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp128_tp2_pp1_acc1_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_1.34G_dp16_tp16_pp1_acc8_mbs1_seq8192_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp16_tp16_pp1_acc8_mbs1_seq8192_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..f4235810c56d5da4f5ed291adb63291df7cd5668 --- /dev/null +++ b/scripts/run_1.34G_dp16_tp16_pp1_acc8_mbs1_seq8192_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp16_tp16_pp1_acc8_mbs1_seq8192_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp16_tp16_pp1_acc8_mbs1_seq8192_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp16_tp2_pp1_acc1_mbs8_seq8192_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp16_tp2_pp1_acc1_mbs8_seq8192_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..c18e437b1a8e221ad6525cd9cd98321a29edf0e2 --- /dev/null +++ b/scripts/run_1.34G_dp16_tp2_pp1_acc1_mbs8_seq8192_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp16_tp2_pp1_acc1_mbs8_seq8192_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp16_tp2_pp1_acc1_mbs8_seq8192_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp16_tp4_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp16_tp4_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..b4ca1dd0a03da2bab4cf66282e3579948b507b42 --- /dev/null +++ b/scripts/run_1.34G_dp16_tp4_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp16_tp4_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp16_tp4_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp16_tp8_pp1_acc1_mbs32_seq8192_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp16_tp8_pp1_acc1_mbs32_seq8192_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..9dd141f9c94d0cfa1280743592b33cdc8bb1b6e8 --- /dev/null +++ b/scripts/run_1.34G_dp16_tp8_pp1_acc1_mbs32_seq8192_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp16_tp8_pp1_acc1_mbs32_seq8192_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp16_tp8_pp1_acc1_mbs32_seq8192_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp16_tp8_pp1_acc32_mbs1_seq2048_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp16_tp8_pp1_acc32_mbs1_seq2048_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..62067fb986434f73d9740b76844b34ec58ae5cd4 --- /dev/null +++ b/scripts/run_1.34G_dp16_tp8_pp1_acc32_mbs1_seq2048_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp16_tp8_pp1_acc32_mbs1_seq2048_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp16_tp8_pp1_acc32_mbs1_seq2048_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp1_tp16_pp8_acc16_mbs16_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp1_tp16_pp8_acc16_mbs16_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..f530d0e99bad83c4a76d7713286e5e05992f9d6a --- /dev/null +++ b/scripts/run_1.34G_dp1_tp16_pp8_acc16_mbs16_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_1.34G_dp1_tp16_pp8_acc16_mbs16_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_1.34G_dp1_tp16_pp8_acc16_mbs16_seq4096_zero0_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp1_tp16_pp8_acc16_mbs16_seq4096_zero0_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp1_tp16_pp8_acc16_mbs16_seq4096_zero0_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_1.34G_dp1_tp32_pp1_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp1_tp32_pp1_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..a3786fdf1aac644b9b82cd4dd5f8dc2d3973ea93 --- /dev/null +++ b/scripts/run_1.34G_dp1_tp32_pp1_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,73 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp1_tp32_pp1_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high +#SBATCH --exclude=ip-26-0-160-192,ip-26-0-171-102 + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +# Disable wandb +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +echo "=== GPU Topology ===" +nvidia-smi topo -m +echo "==================" + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp1_tp32_pp1_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp1_tp8_pp2_acc4_mbs64_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp1_tp8_pp2_acc4_mbs64_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..2a8098efed18cfeaaed3afeb0604515457fd4022 --- /dev/null +++ b/scripts/run_1.34G_dp1_tp8_pp2_acc4_mbs64_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,73 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp1_tp8_pp2_acc4_mbs64_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high +#SBATCH --exclude=ip-26-0-160-192,ip-26-0-171-102 + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=2 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +# Disable wandb +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +echo "=== GPU Topology ===" +nvidia-smi topo -m +echo "==================" + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp1_tp8_pp2_acc4_mbs64_seq4096_zero0_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp2_tp16_pp1_acc64_mbs4_seq2048_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp2_tp16_pp1_acc64_mbs4_seq2048_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..a1e013620005d4277b0a1dcafce14a6baab6521c --- /dev/null +++ b/scripts/run_1.34G_dp2_tp16_pp1_acc64_mbs4_seq2048_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp2_tp16_pp1_acc64_mbs4_seq2048_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp16_pp1_acc64_mbs4_seq2048_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp2_tp16_pp4_acc8_mbs16_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp2_tp16_pp4_acc8_mbs16_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..66bf6f556576318bb678cf7425df07c8d0a527e7 --- /dev/null +++ b/scripts/run_1.34G_dp2_tp16_pp4_acc8_mbs16_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_1.34G_dp2_tp16_pp4_acc8_mbs16_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_1.34G_dp2_tp16_pp4_acc8_mbs16_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp16_pp4_acc8_mbs16_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp16_pp4_acc8_mbs16_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_1.34G_dp2_tp64_pp1_acc128_mbs2_seq2048_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp2_tp64_pp1_acc128_mbs2_seq2048_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..b6f48d19814668afdd39dd4fa8e3b89daf98e0a3 --- /dev/null +++ b/scripts/run_1.34G_dp2_tp64_pp1_acc128_mbs2_seq2048_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp2_tp64_pp1_acc128_mbs2_seq2048_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp64_pp1_acc128_mbs2_seq2048_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp2_tp8_pp1_acc256_mbs4_seq2048_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp2_tp8_pp1_acc256_mbs4_seq2048_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..f29a9c04f5733ffeb4ee195be67e227840dd9bf8 --- /dev/null +++ b/scripts/run_1.34G_dp2_tp8_pp1_acc256_mbs4_seq2048_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp2_tp8_pp1_acc256_mbs4_seq2048_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=2 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp8_pp1_acc256_mbs4_seq2048_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp2_tp8_pp1_acc32_mbs8_seq8192_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp2_tp8_pp1_acc32_mbs8_seq8192_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..dd5a4d225dc8095706479643e22d066a75ea6496 --- /dev/null +++ b/scripts/run_1.34G_dp2_tp8_pp1_acc32_mbs8_seq8192_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp2_tp8_pp1_acc32_mbs8_seq8192_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=2 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp8_pp1_acc32_mbs8_seq8192_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp32_tp16_pp1_acc4_mbs4_seq2048_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp32_tp16_pp1_acc4_mbs4_seq2048_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..8b5db4cf3a0aea46fbb029bc5b95cfadd7b3d547 --- /dev/null +++ b/scripts/run_1.34G_dp32_tp16_pp1_acc4_mbs4_seq2048_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp32_tp16_pp1_acc4_mbs4_seq2048_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp32_tp16_pp1_acc4_mbs4_seq2048_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp32_tp8_pp1_acc2_mbs8_seq8192_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp32_tp8_pp1_acc2_mbs8_seq8192_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..c6240138c82defc3825d389b5838aeb75a68e6b2 --- /dev/null +++ b/scripts/run_1.34G_dp32_tp8_pp1_acc2_mbs8_seq8192_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp32_tp8_pp1_acc2_mbs8_seq8192_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp32_tp8_pp1_acc2_mbs8_seq8192_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_1.34G_dp4_tp32_pp1_acc128_mbs4_seq2048_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp4_tp32_pp1_acc128_mbs4_seq2048_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..1800d116ec5cdbe6b86f5cce6de963992d5c1851 --- /dev/null +++ b/scripts/run_1.34G_dp4_tp32_pp1_acc128_mbs4_seq2048_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp4_tp32_pp1_acc128_mbs4_seq2048_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp4_tp32_pp1_acc128_mbs4_seq2048_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp4_tp32_pp1_acc1_mbs8_seq32768_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp4_tp32_pp1_acc1_mbs8_seq32768_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..9ace974a204456f444559f053e1aa96699b7bb8d --- /dev/null +++ b/scripts/run_1.34G_dp4_tp32_pp1_acc1_mbs8_seq32768_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp4_tp32_pp1_acc1_mbs8_seq32768_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp4_tp32_pp1_acc1_mbs8_seq32768_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp4_tp32_pp1_acc4_mbs8_seq32768_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp4_tp32_pp1_acc4_mbs8_seq32768_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..956f027d4bca267183a93f7e97cb1e951cabd453 --- /dev/null +++ b/scripts/run_1.34G_dp4_tp32_pp1_acc4_mbs8_seq32768_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp4_tp32_pp1_acc4_mbs8_seq32768_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp4_tp32_pp1_acc4_mbs8_seq32768_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_1.34G_dp4_tp4_pp1_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp4_tp4_pp1_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..e47af23addd66b869de99924df47899da2899289 --- /dev/null +++ b/scripts/run_1.34G_dp4_tp4_pp1_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,124 @@ +#!/bin/bash +#SBATCH --job-name=bench_1.34G_dp4_tp4_pp1_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=2 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_1.34G_dp4_tp4_pp1_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp4_tp4_pp1_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp4_tp4_pp1_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_1.34G_dp4_tp4_pp1_acc32_mbs1_seq32768_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp4_tp4_pp1_acc32_mbs1_seq32768_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..ac776cb461157f6fe6b67e40628c9df66c05f5fa --- /dev/null +++ b/scripts/run_1.34G_dp4_tp4_pp1_acc32_mbs1_seq32768_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp4_tp4_pp1_acc32_mbs1_seq32768_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=2 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp4_tp4_pp1_acc32_mbs1_seq32768_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp4_tp8_pp1_acc2_mbs64_seq8192_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp4_tp8_pp1_acc2_mbs64_seq8192_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..69c4c5cc0e6028054a32f9ef047e4e6aec895749 --- /dev/null +++ b/scripts/run_1.34G_dp4_tp8_pp1_acc2_mbs64_seq8192_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp4_tp8_pp1_acc2_mbs64_seq8192_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp4_tp8_pp1_acc2_mbs64_seq8192_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_1.34G_dp4_tp8_pp1_acc4_mbs8_seq32768_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp4_tp8_pp1_acc4_mbs8_seq32768_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..4cb7995a473a718790e49203e3d9ae3b7dee1ca0 --- /dev/null +++ b/scripts/run_1.34G_dp4_tp8_pp1_acc4_mbs8_seq32768_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp4_tp8_pp1_acc4_mbs8_seq32768_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp4_tp8_pp1_acc4_mbs8_seq32768_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_1.34G_dp64_tp1_pp2_acc1_mbs8_seq2048_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp64_tp1_pp2_acc1_mbs8_seq2048_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..33f2e8321594a89294dcbb1e7c5f0586a1814ba1 --- /dev/null +++ b/scripts/run_1.34G_dp64_tp1_pp2_acc1_mbs8_seq2048_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp64_tp1_pp2_acc1_mbs8_seq2048_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp64_tp1_pp2_acc1_mbs8_seq2048_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp8_tp16_pp1_acc4_mbs64_seq2048_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp8_tp16_pp1_acc4_mbs64_seq2048_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..e8e954266cddcfc78ac22ea5fcdcbaec4ea7cc84 --- /dev/null +++ b/scripts/run_1.34G_dp8_tp16_pp1_acc4_mbs64_seq2048_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp8_tp16_pp1_acc4_mbs64_seq2048_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp8_tp16_pp1_acc4_mbs64_seq2048_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_1.34G_dp8_tp2_pp1_acc32_mbs8_seq2048_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp8_tp2_pp1_acc32_mbs8_seq2048_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..70d80a9c63d29a3fdd8cdc772abbc8f696169554 --- /dev/null +++ b/scripts/run_1.34G_dp8_tp2_pp1_acc32_mbs8_seq2048_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp8_tp2_pp1_acc32_mbs8_seq2048_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=2 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp8_tp2_pp1_acc32_mbs8_seq2048_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp8_tp32_pp1_acc64_mbs1_seq8192_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp8_tp32_pp1_acc64_mbs1_seq8192_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..6b050487ad31a83d1f4f6e55c1a2916b10888926 --- /dev/null +++ b/scripts/run_1.34G_dp8_tp32_pp1_acc64_mbs1_seq8192_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp8_tp32_pp1_acc64_mbs1_seq8192_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp8_tp32_pp1_acc64_mbs1_seq8192_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_1.34G_dp8_tp4_pp4_acc8_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp8_tp4_pp4_acc8_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..a0522843903e1c2429dc74632331be6ccc06c835 --- /dev/null +++ b/scripts/run_1.34G_dp8_tp4_pp4_acc8_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_1.34G_dp8_tp4_pp4_acc8_mbs4_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_1.34G_dp8_tp4_pp4_acc8_mbs4_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp8_tp4_pp4_acc8_mbs4_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp8_tp4_pp4_acc8_mbs4_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_235M_dp512_tp1_pp1_acc1_mbs2_seq4096_zero0_l12_h1024_heads16.sh b/scripts/run_235M_dp512_tp1_pp1_acc1_mbs2_seq4096_zero0_l12_h1024_heads16.sh new file mode 100644 index 0000000000000000000000000000000000000000..ff2b78528b48bdd65e03be397013982f1933fca7 --- /dev/null +++ b/scripts/run_235M_dp512_tp1_pp1_acc1_mbs2_seq4096_zero0_l12_h1024_heads16.sh @@ -0,0 +1,57 @@ +#!/bin/bash + +#SBATCH --job-name=bench_235M_dp512_tp1_pp1_acc1_mbs2_seq4096_zero0_l12_h1024_heads16 # Job name +#SBATCH --time=00:15:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_235M_dp512_tp1_pp1_acc1_mbs2_seq4096_zero0_l12_h1024_heads16.yaml diff --git a/scripts/run_3.57G_dp16_tp2_pp1_acc8.0_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_3.57G_dp16_tp2_pp1_acc8.0_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..cccf110ff06246b638b84d646403c149068bc2bf --- /dev/null +++ b/scripts/run_3.57G_dp16_tp2_pp1_acc8.0_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,161 @@ +#!/bin/bash +#SBATCH --job-name=bench_3.57G_dp16_tp2_pp1_acc8.0_mbs2_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=normal + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e +echo "Running script: $0" + + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_3.57G_dp16_tp2_pp1_acc8.0_mbs2_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp16_tp2_pp1_acc8.0_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp16_tp2_pp1_acc8.0_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_3.57G_dp16_tp8_pp1_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_3.57G_dp16_tp8_pp1_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..467f8eb9e62e0f11e7a52fa625cf770938acac0b --- /dev/null +++ b/scripts/run_3.57G_dp16_tp8_pp1_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,124 @@ +#!/bin/bash +#SBATCH --job-name=bench_3.57G_dp16_tp8_pp1_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_3.57G_dp16_tp8_pp1_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp16_tp8_pp1_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp16_tp8_pp1_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_3.57G_dp2_tp8_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_3.57G_dp2_tp8_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..ecb522748b85cdd09c082a4adf451b8964050352 --- /dev/null +++ b/scripts/run_3.57G_dp2_tp8_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_3.57G_dp2_tp8_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_3.57G_dp2_tp8_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp2_tp8_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp2_tp8_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_3.57G_dp4_tp32_pp1_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_3.57G_dp4_tp32_pp1_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..b9b48e4c3dacffb3f92a5ac72a8add9c31976842 --- /dev/null +++ b/scripts/run_3.57G_dp4_tp32_pp1_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,124 @@ +#!/bin/bash +#SBATCH --job-name=bench_3.57G_dp4_tp32_pp1_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_3.57G_dp4_tp32_pp1_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp4_tp32_pp1_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp4_tp32_pp1_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_469G_dp128_tp1_pp1_acc2_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_469G_dp128_tp1_pp1_acc2_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..0218625622ebc22b35f82e418d442dc03ceabb47 --- /dev/null +++ b/scripts/run_469G_dp128_tp1_pp1_acc2_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_469G_dp128_tp1_pp1_acc2_mbs1_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_469G_dp128_tp1_pp1_acc2_mbs1_seq4096_zero0_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_469G_dp128_tp1_pp1_acc2_mbs1_seq4096_zero0_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_469G_dp128_tp1_pp1_acc2_mbs1_seq4096_zero0_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_469G_dp16_tp16_pp1_acc1_mbs16_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_469G_dp16_tp16_pp1_acc1_mbs16_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..e9c300aed7922518c2c3bfd75824245b957ad95f --- /dev/null +++ b/scripts/run_469G_dp16_tp16_pp1_acc1_mbs16_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,124 @@ +#!/bin/bash +#SBATCH --job-name=bench_469G_dp16_tp16_pp1_acc1_mbs16_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_469G_dp16_tp16_pp1_acc1_mbs16_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_469G_dp16_tp16_pp1_acc1_mbs16_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_469G_dp16_tp16_pp1_acc1_mbs16_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_469G_dp256_tp2_pp1_acc1_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_469G_dp256_tp2_pp1_acc1_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..16900bb2b877683a0da82b600e42fcf0070c3d3e --- /dev/null +++ b/scripts/run_469G_dp256_tp2_pp1_acc1_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_469G_dp256_tp2_pp1_acc1_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_469G_dp256_tp2_pp1_acc1_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_469G_dp256_tp2_pp1_acc1_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_469G_dp256_tp2_pp1_acc1_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp1_tp2_pp8_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp1_tp2_pp8_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..237ad57d37c3ddbfaadfe0c6d547ca9fc8d433a5 --- /dev/null +++ b/scripts/run_8.86G_dp1_tp2_pp8_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,73 @@ +#!/bin/bash + +#SBATCH --job-name=bench_8.86G_dp1_tp2_pp8_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high +#SBATCH --exclude=ip-26-0-160-192,ip-26-0-171-102 + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=2 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +# Disable wandb +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +echo "=== GPU Topology ===" +nvidia-smi topo -m +echo "==================" + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp1_tp2_pp8_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_8.86G_dp2_tp16_pp2_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp2_tp16_pp2_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..c34770f250700000bc8ca9091a67b9d3baa53ef1 --- /dev/null +++ b/scripts/run_8.86G_dp2_tp16_pp2_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp2_tp16_pp2_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp2_tp16_pp2_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp2_tp16_pp2_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp2_tp16_pp2_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp2_tp1_pp4_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp2_tp1_pp4_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..d216ad98a773902fe3902d8a09a97a6de24a14c8 --- /dev/null +++ b/scripts/run_8.86G_dp2_tp1_pp4_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp2_tp1_pp4_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp2_tp1_pp4_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp2_tp1_pp4_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp2_tp1_pp4_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp4_tp16_pp8_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp4_tp16_pp8_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..ad3b2bc82327adce04fa47a9562bb132af7b442b --- /dev/null +++ b/scripts/run_8.86G_dp4_tp16_pp8_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp4_tp16_pp8_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp4_tp16_pp8_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp4_tp16_pp8_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp4_tp16_pp8_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp4_tp8_pp2_acc64_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp4_tp8_pp2_acc64_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..b085383e557d4aee0ab0f65f34036effe6aa9ba1 --- /dev/null +++ b/scripts/run_8.86G_dp4_tp8_pp2_acc64_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp4_tp8_pp2_acc64_mbs1_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp4_tp8_pp2_acc64_mbs1_seq4096_zero0_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp4_tp8_pp2_acc64_mbs1_seq4096_zero0_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp4_tp8_pp2_acc64_mbs1_seq4096_zero0_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp64_tp8_pp1_acc2_mbs2_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp64_tp8_pp1_acc2_mbs2_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..eb6a67031e343ed5d4fe91fb110c8a2765ada81f --- /dev/null +++ b/scripts/run_8.86G_dp64_tp8_pp1_acc2_mbs2_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,161 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp64_tp8_pp1_acc2_mbs2_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=normal + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e +echo "Running script: $0" + + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp64_tp8_pp1_acc2_mbs2_seq4096_zero0_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp64_tp8_pp1_acc2_mbs2_seq4096_zero0_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp64_tp8_pp1_acc2_mbs2_seq4096_zero0_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp8_tp16_pp4_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp8_tp16_pp4_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..fa24b1a984d209a635ead9f9ae35b08931906faf --- /dev/null +++ b/scripts/run_8.86G_dp8_tp16_pp4_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp8_tp16_pp4_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp8_tp16_pp4_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp8_tp16_pp4_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp8_tp16_pp4_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_80G_dp128_tp4_pp1_acc1_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp128_tp4_pp1_acc1_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..08a5742dbf18aab29740718ccbae4c3d6b787547 --- /dev/null +++ b/scripts/run_80G_dp128_tp4_pp1_acc1_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_80G_dp128_tp4_pp1_acc1_mbs2_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_80G_dp128_tp4_pp1_acc1_mbs2_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp128_tp4_pp1_acc1_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp128_tp4_pp1_acc1_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_80G_dp16_tp16_pp1_acc8_mbs2_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp16_tp16_pp1_acc8_mbs2_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..b4fbcec00dbec15fc516b2ad01323965f455eee3 --- /dev/null +++ b/scripts/run_80G_dp16_tp16_pp1_acc8_mbs2_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,124 @@ +#!/bin/bash +#SBATCH --job-name=bench_80G_dp16_tp16_pp1_acc8_mbs2_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_80G_dp16_tp16_pp1_acc8_mbs2_seq4096_zero0_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp16_tp16_pp1_acc8_mbs2_seq4096_zero0_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp16_tp16_pp1_acc8_mbs2_seq4096_zero0_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_80G_dp16_tp8_pp2_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp16_tp8_pp2_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..ea492a955abf2327c22aa1673c192a1edb3aa4f9 --- /dev/null +++ b/scripts/run_80G_dp16_tp8_pp2_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_80G_dp16_tp8_pp2_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_80G_dp16_tp8_pp2_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp16_tp8_pp2_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp16_tp8_pp2_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_80G_dp1_tp8_pp1_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp1_tp8_pp1_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..c36a866e8739577b82217b05560f9750f626870f --- /dev/null +++ b/scripts/run_80G_dp1_tp8_pp1_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,73 @@ +#!/bin/bash + +#SBATCH --job-name=bench_80G_dp1_tp8_pp1_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high +#SBATCH --exclude=ip-26-0-160-192,ip-26-0-171-102 + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +# Disable wandb +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +echo "=== GPU Topology ===" +nvidia-smi topo -m +echo "==================" + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp1_tp8_pp1_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_80G_dp2_tp8_pp2_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp2_tp8_pp2_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..2c8aa0b1d2e0b2587605f448c2988d091e7c6989 --- /dev/null +++ b/scripts/run_80G_dp2_tp8_pp2_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_80G_dp2_tp8_pp2_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_80G_dp2_tp8_pp2_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp2_tp8_pp2_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp2_tp8_pp2_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_80G_dp2_tp8_pp32_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp2_tp8_pp32_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..d8adce34b15f99627bdb6fcf16261ca138f029e1 --- /dev/null +++ b/scripts/run_80G_dp2_tp8_pp32_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_80G_dp2_tp8_pp32_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_80G_dp2_tp8_pp32_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp2_tp8_pp32_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp2_tp8_pp32_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_80G_dp8_tp2_pp2_acc16_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp8_tp2_pp2_acc16_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..a7af293aa4af148bb2c3bce79e8a02af48a15c3e --- /dev/null +++ b/scripts/run_80G_dp8_tp2_pp2_acc16_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_80G_dp8_tp2_pp2_acc16_mbs2_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_80G_dp8_tp2_pp2_acc16_mbs2_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp8_tp2_pp2_acc16_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp8_tp2_pp2_acc16_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_dp128_tp1_pp1_acc4_mbs2_seq4096_zero0_l42_h4096_heads32.sh b/scripts/run_dp128_tp1_pp1_acc4_mbs2_seq4096_zero0_l42_h4096_heads32.sh new file mode 100644 index 0000000000000000000000000000000000000000..37d130528cea5823e3437043d37caca1b2c27180 --- /dev/null +++ b/scripts/run_dp128_tp1_pp1_acc4_mbs2_seq4096_zero0_l42_h4096_heads32.sh @@ -0,0 +1,57 @@ +#!/bin/bash + +#SBATCH --job-name=bench_dp128_tp1_pp1_acc4_mbs2_seq4096_zero0_l42_h4096_heads32 # Job name +#SBATCH --time=00:15:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%x-%j.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=80 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_dp128_tp1_pp1_acc4_mbs2_seq4096_zero0_l42_h4096_heads32.yaml diff --git a/scripts/run_dp8_tp8_pp1_acc1_mbs8_seq2048.sh b/scripts/run_dp8_tp8_pp1_acc1_mbs8_seq2048.sh new file mode 100644 index 0000000000000000000000000000000000000000..fd7d07dea0c524aec6cc7f4cd1b42f4c773d5f0b --- /dev/null +++ b/scripts/run_dp8_tp8_pp1_acc1_mbs8_seq2048.sh @@ -0,0 +1,57 @@ +#!/bin/bash + +#SBATCH --job-name=bench_dp8_tp8_pp1_acc1_mbs8_seq2048 # Job name +#SBATCH --time=00:15:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%x-%j.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=80 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_dp8_tp8_pp1_acc1_mbs8_seq2048.yaml