omniaudio commited on
Commit
77dbe7c
·
verified ·
1 Parent(s): 6e2b1b0

Upload folder using huggingface_hub

Browse files
.gitignore ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # UV
98
+ # Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ #uv.lock
102
+
103
+ # poetry
104
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
105
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
106
+ # commonly ignored for libraries.
107
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
108
+ #poetry.lock
109
+
110
+ # pdm
111
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
112
+ #pdm.lock
113
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
114
+ # in version control.
115
+ # https://pdm.fming.dev/latest/usage/project/#working-with-version-control
116
+ .pdm.toml
117
+ .pdm-python
118
+ .pdm-build/
119
+
120
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
121
+ __pypackages__/
122
+
123
+ # Celery stuff
124
+ celerybeat-schedule
125
+ celerybeat.pid
126
+
127
+ # SageMath parsed files
128
+ *.sage.py
129
+
130
+ # Environments
131
+ .env
132
+ .venv
133
+ env/
134
+ venv/
135
+ ENV/
136
+ env.bak/
137
+ venv.bak/
138
+
139
+ # Spyder project settings
140
+ .spyderproject
141
+ .spyproject
142
+
143
+ # Rope project settings
144
+ .ropeproject
145
+
146
+ # mkdocs documentation
147
+ /site
148
+
149
+ # mypy
150
+ .mypy_cache/
151
+ .dmypy.json
152
+ dmypy.json
153
+
154
+ # Pyre type checker
155
+ .pyre/
156
+
157
+ # pytype static type analyzer
158
+ .pytype/
159
+
160
+ # Cython debug symbols
161
+ cython_debug/
162
+
163
+ # PyCharm
164
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
165
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
166
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
167
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
168
+ #.idea/
169
+
170
+ # Ruff stuff:
171
+ .ruff_cache/
172
+
173
+ # PyPI configuration file
174
+ .pypirc
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Anonymous Authors
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md CHANGED
@@ -1,3 +1,139 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Sphere360
2
+
3
+ Sphere360 is a comprehensive dataset of paired 360-degree videos and spatial audio content sourced from YouTube. The collection contains over 103,000 matched 360-degree video and audio clips, representing a total of 288 hours of immersive content. This repository includes both the curated dataset and the essential web crawling and data processing tools used for its compilation.
4
+
5
+
6
+
7
+
8
+ - [Sphere360](#sphere360)
9
+ - [Copyright](#copyright)
10
+ - [Dataset Split](#dataset-split)
11
+ - [Toolset Environment](#toolset-environment)
12
+ - [Python Environment](#python-environment)
13
+ - [YouTube API](#youtube-api)
14
+ - [FFmpeg](#ffmpeg)
15
+ - [yt-dlp (Optional)](#yt-dlp-optional)
16
+ - [Data Crawling](#data-crawling)
17
+ - [Data Cleaning](#data-cleaning)
18
+ - [Acknowledgments](#acknowledgments)
19
+ - [Data Sources](#data-sources)
20
+ - [Data Cleaning Dependencies](#data-cleaning-dependencies)
21
+
22
+
23
+
24
+
25
+ ## Copyright
26
+
27
+ The video data utilized in this study were sourced from the YouTube platform. All content is copyrighted by their respective creators and owners. The videos included in this research adhere to YouTube's terms of service and, where applicable, to Creative Commons licenses. Specifically, videos under the Creative Commons license have been appropriately attributed to the original authors in accordance with the license terms (CC BY 4.0).
28
+
29
+ For videos not governed by a Creative Commons license, we acknowledge that they are protected by copyright and are used exclusively for academic research purposes. No commercial use of these videos or content is intended. The use of these videos falls under the fair use doctrine for educational and research purposes, as permitted by copyright law.
30
+
31
+ All channel information contained in the dataset is recorded in `dataset/channels.csv`.
32
+
33
+ ## Dataset Split
34
+
35
+ The dataset split configuration can be found in the `dataset/split` directory, containing:
36
+
37
+ - Training set: ~100.5k samples
38
+ - Test set: ~3k samples
39
+ - Each sample duration: 10 seconds
40
+
41
+
42
+
43
+ ## Toolset Environment
44
+
45
+ #### Python Environment
46
+
47
+ **Data Crawling:**
48
+
49
+ - Python Version: 3.10
50
+ - Requirements: [toolset/crawl/requirements.txt](toolset/crawl/requirements.txt)
51
+
52
+ **Data Cleaning:**
53
+
54
+ - Python Version: 3.10
55
+ - Requirements: [toolset/clean/requirements.txt](toolset/clean/requirements.txt)
56
+
57
+ #### YouTube API
58
+
59
+ 1. Apply for a [YouTube API](https://developers.google.com/youtube/v3/) Key from Google Cloud Console
60
+ 2. Insert the obtained key into:
61
+ ```python
62
+ # Location: toolset/crawl/core/build.py
63
+ __API_KEY = "YOUR_YOUTUBE_API_KEY_HERE" # Enter your YouTube API key here
64
+ ```
65
+
66
+ #### FFmpeg
67
+
68
+ This project uses FFmpeg for audio/video data processing. Please configure the [FFmpeg](https://ffmpeg.org/) environment.
69
+
70
+ #### yt-dlp (Optional)
71
+
72
+ To use the download scripts provided in this repository, please configure the [yt-dlp](https://github.com/yt-dlp/yt-dlp/tree/master) environment.
73
+
74
+
75
+
76
+ ## Data Crawling
77
+
78
+ ![DataCrawl](docs/img/crawl.png)
79
+
80
+ The general workflow for data crawling is as follows:
81
+
82
+ + Use formatted keywords for search, combining specific event labels (e.g. `firework`, `cat`, `waterfall`) with qualifying terms (e.g. `spatial audio 360`) to ensure class diversity and retrieve more 360° and FOA content
83
+
84
+ + Implement two-stage data crawling:
85
+
86
+ + **Stage 1: Channel-Based Crawling**
87
+
88
+ Use a large-scale approach to filter relevant channels. Detailed process:
89
+
90
+ + Identify channels that appear in search results more than a specified threshold count
91
+ + Sample and download from these channels, then perform quality verification (manually or using cleaning pipelines) to filter out high-quality channels from unusable ones
92
+ + Obtain video lists from high-quality channels and proceed with downloading
93
+
94
+ + **Stage 2: Video-Based Crawling**
95
+
96
+ + Filter out videos from unusable channels in search results
97
+ + Screen remaining videos (manually or using cleaning pipelines)
98
+
99
+ **For detailed workflow and script usage, please refer to [docs/crawl.md](docs/crawl.md).**
100
+
101
+
102
+
103
+ ## Data Cleaning
104
+
105
+ ![DataClean](docs/img/clean.png)
106
+
107
+ The cleaning pipeline primarily consists of four dimensions:
108
+
109
+ - **Silent Filtering**: Filters out silent audio segments
110
+ - **Static Frame Filtering**: Removes static or nearly static videos
111
+ - **Audio-Visual Matching Filtering**: Eliminates videos with audio-visual mismatches (e.g., those containing background music, voiceovers, or post-production audio)
112
+ - **Voice Detection Filtering**: Filters out videos containing human speech
113
+
114
+ **For detailed workflow and script usage, please refer to [docs/clean.md](docs/clean.md).**
115
+
116
+
117
+
118
+ ## Acknowledgments
119
+
120
+ This project is built upon the following resources and open-source projects:
121
+
122
+ ### Data Sources
123
+ - **[YouTube Data API v3](https://developers.google.com/youtube/v3/)**
124
+
125
+ Our project utilizes its end-to-end speech recognition model to achieve Voice Detection Filtering.
126
+
127
+
128
+ ### Data Cleaning Dependencies
129
+ - **[ImageBind](https://github.com/facebookresearch/ImageBind)**
130
+
131
+
132
+ Our project employs its cross-modal alignment capability to implement the Audio-Visual Matching Filtering.
133
+
134
+ - **[SenseVoice](https://github.com/FunAudioLLM/SenseVoice)** (Replace with actual link)
135
+
136
+ An advanced speech understanding toolkit, licensed under **[License Type]** (e.g., Apache 2.0).
137
+
138
+ Its end-to-end speech recognition model was instrumental in generating textual metadata for this project.
139
+
dataset/channels.csv ADDED
@@ -0,0 +1,247 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ channel_id
2
+ UC-0V6BpzC8qRrUEQTfZCWhg
3
+ UC-0Vhl624BIiNgMLSNHXdiQ
4
+ UC-H1n8_mJSNRJU6QyA-lysw
5
+ UC-JmtmWgYvtFCcDqyA6xoFw
6
+ UC-KyB39XyC6hVMOuN6NMcPw
7
+ UC-_mMEFh_62Wur7Zls67eOQ
8
+ UC-i5I5VmwsAF_oRKtsDpyLQ
9
+ UC-tXYTUZP7XW_0H95g04ECw
10
+ UC-vzk2hnTGHQatH7MSHwetw
11
+ UC02kV4SC13MtoadGB1QUIgQ
12
+ UC0LKzPzCaxEWJ6JzRsXWIYw
13
+ UC0pXAJNXLm0VkOWVr2m-dcQ
14
+ UC1DZnVaxNgNjRep8Vswqh-Q
15
+ UC1HX8DWEmVTWj5WNaLd1a_Q
16
+ UC1I_lLzVbMYNm0JBWJ2g-NA
17
+ UC2GDAXqAxMNtUMjwkvd_aRA
18
+ UC2kKD5FrPHGLaFo8T3rRl3Q
19
+ UC2n363potl9XmBbkrhkF9nA
20
+ UC2sojyHvA7RWfaQmRw3FSZQ
21
+ UC36a8bZhRwV2XVpB79oRjeg
22
+ UC3AAkmimqkNA0RiwBMPVXyg
23
+ UC3FfjxGHd2oghObfnORWatg
24
+ UC3Nt-50NEWzH6R1ovbtIrGA
25
+ UC45t78-1NUPa8SiAjf6hluw
26
+ UC49Gd9W9yphYWa-MWwtPe2A
27
+ UC4A3dgWtWNk7RHt2T7cCWbw
28
+ UC4WCmUAQWXiZOdR3LuQbVxw
29
+ UC4adL1ao1n49oRV5K28sOjA
30
+ UC5nGc3TtgRxukjPlHc1v9Fg
31
+ UC5stUbrIlkm5UTMPgVm2dsg
32
+ UC6B7o6snb1gtczzLsC1ZVMw
33
+ UC6NkTCJimTbM1KKCHkpL4uw
34
+ UC6_696Vph-306CVsenXvbvQ
35
+ UC7wzycNHhEL85fk2QlAtTrw
36
+ UC86zaFXqv993RLbR1w_LJSQ
37
+ UC8KSiJmfPQ0HasbHRNyyXWQ
38
+ UC8OHmFHOZW3krsDWdvcjuKQ
39
+ UC9-cU0_3nV5LvYCj7dI-fqA
40
+ UC9S1bbeiuKN_BeZLJ-VNu_Q
41
+ UCA8m3PAK3BvUNR3cZHZ4oKg
42
+ UCALKj3WMatLxhtMtwcjUutQ
43
+ UCAeZgseUaAmIAyHOg1Yx-6g
44
+ UCB2CFRLQ4qC37-5JebM13VQ
45
+ UCB54hjznJECeluoAI5TsGpQ
46
+ UCBpWTx0VlXYZsMul4Mp9EuQ
47
+ UCBrC3IijY8Rn3VhsDNAc7Zg
48
+ UCC4MmGA_F2RlraxHdVCRNmw
49
+ UCCMzuoJS4OXjy35Zah0txuA
50
+ UCCgQes9d7seWAeNbhC8Tidg
51
+ UCCmfZuv1KR-WpKt6s-FJPmQ
52
+ UCCr3yFFXHDFDYzM0Gm08zjA
53
+ UCCtj8-RJGZiv4K9NuBOO8Kg
54
+ UCD1Em4q90ZUK2R5HKesszJg
55
+ UCD7_UQQs4a3k7nxSqDBzhxA
56
+ UCDEFYX06AvP54D_F-HHbgkg
57
+ UCDZbkPxlQuESBFq38u7kaYA
58
+ UCDsaUsbzJgNJ-zLJp3kluxA
59
+ UCE9vXEImVsVuCzKy-WJJu1A
60
+ UCEf15bpur2w969lnPkzY3VQ
61
+ UCEjkWMLZWz4rDsp-ahHLmjA
62
+ UCEnFPoPWMEXLPX-GZfX5Umw
63
+ UCFJFUjH4EwdmH7OVfzcy22g
64
+ UCFRU-wmA7HwqkOjrX9j4H6g
65
+ UCF_NASwEEfS2dvBfExBiLgQ
66
+ UCG3uX7cQOfNP4BHLAd4GFEw
67
+ UCGALpeOi9Cu5ypGoOM3KY5g
68
+ UCGT4mjOPgaPjtEHayBJY79A
69
+ UCGj7vE2XblTLSp06F0KCQmQ
70
+ UCGnOZEnI03LLOrrdPZKfnTw
71
+ UCGsc3rEP5QxgDmiwN1syqig
72
+ UCGt20xKaE_37kQPVE5xhf4w
73
+ UCGzbiQGtI4f-S6hE3MLR9dg
74
+ UCHYJ8f6Otp0NaefHWxSiq1Q
75
+ UCIAwOlQqN7Z-ss6XF3qfPrQ
76
+ UCIZ9sXrDrWwB40U0Zg2zA7g
77
+ UCIblnJ0mWIZ4QHJaB1p-BLg
78
+ UCIegeCgzFPOZhiYRn4L-gbQ
79
+ UCIzpdYS-tlHY8wHdpetqt8g
80
+ UCJ7vjf6yFJGv9jIiEXKIXJA
81
+ UCJ84fTiF5ppiEUmdJKMgwGQ
82
+ UCJJNCcGSG8xEe8RbVBmLd2Q
83
+ UCK9qLJvm6X9ACmDI8c6_xQA
84
+ UCKgVX-k42818DA6UiYyXLQQ
85
+ UCKkc9WmQrarYY7hIZv_43eA
86
+ UCLC5ZvdgBMfPINC57QJXnkQ
87
+ UCLNGrXFInRUehzwskSCTfrA
88
+ UCLSzi_703BpBS1Pv6XweiHQ
89
+ UCLl46BWTrgkmiXPWWe9fJrg
90
+ UCLpIDPp8Z0JBmYJJ2Jc-L0w
91
+ UCLvwyjVJ2Tr025oaN_MQTpQ
92
+ UCMd3dW1_hrpLODFB4wOI31A
93
+ UCN027-rS7Z7QmmR336HJA1Q
94
+ UCNNFrjzLIVOBzULaggXGDxw
95
+ UCOLvC1S6fSuaYZ2-Vy8_DEQ
96
+ UCQ7y9s6AiXdAvFQ6ws-bMCg
97
+ UCQVuV2rIkpzU3E60YuyWquA
98
+ UCQqhBPYwK01P9hp41hRdkdA
99
+ UCQyej2QC2_-ARo7eYehDoNw
100
+ UCRAXFP7Ha4_pxmANlPvo-Vg
101
+ UCSGy58gvmU7EclBrTjZo_kQ
102
+ UCSQSRHSMjJthdtNpHuuoFIw
103
+ UCSYCauuVNgyRQZ6_DNFGUSQ
104
+ UCSruQoGkqd7C55KP2cHeL5g
105
+ UCT-AHMyQGneK3u_VvnYB6JQ
106
+ UCT7_0KK0x3M5cep_idJbkTA
107
+ UCTkX5coSMfkjf-QTFr36bRg
108
+ UCU2XevOWA1IkxF3Xaw-acTg
109
+ UCU6pwlIPjpKK3ADt822u4yQ
110
+ UCU8jFCZLbp-pqLfgsNwF_7w
111
+ UCUVQBSQ4JaPENX5qXb-jMmA
112
+ UCUyWFR-faejrl4Ss5gkt5GA
113
+ UCUzJ4K-4QQYEHlUbnHkZSdA
114
+ UCV5Rj2FZ8L2Rwrl4HrqveqQ
115
+ UCV7VA54Bix5uNwHVkKTZwUg
116
+ UCV7zYe2HkgQAz0wuC6_BXkg
117
+ UCVosJQqnTScwwtBGq_KnEUA
118
+ UCVv3JBile7OCTU9mSGGNqdA
119
+ UCVydZvHpPbYZ0bisPgVll0A
120
+ UCWGQ4MffFyjAh6S5ZVZaFNg
121
+ UCWIUwxGNbhMjAA5I-c-wLdg
122
+ UCWZfaG02u0MNog4MVP_JxoQ
123
+ UCWpZYZv6Nv3BMVL1lux0UAw
124
+ UCWuLzj3_RljzsY2zHGABu6g
125
+ UCXXlojbBdfF60U_ILu6oLoA
126
+ UCXz1Pr5-y8XSEUiEQv8v-ag
127
+ UCYIMb8o8mazHmVjxTsHv9ug
128
+ UCYWISqscop1eMKcxADf_okQ
129
+ UCYcjlfmQkqrwFmYdUG-kwqg
130
+ UCYideORuJs4pgx3LJTLEQQQ
131
+ UCYzzY8r36QIYmnDGg5c-54w
132
+ UCZCDzlWGXZCai8y8Z-2Oi7g
133
+ UCZF5M7nl3AilyG-9Gbx1OFg
134
+ UCZOAMSMPtGMD524xeVLdZ_w
135
+ UCZkjyM_8fvadBtDVZggN-gA
136
+ UCZtbc7OlDAY56ZT6Fh7Bwhw
137
+ UCZxmrNsN5Vo05oNNvyzoByQ
138
+ UC_bKhergk63u0pQ85tBIdVQ
139
+ UC_zlYlSb3aHcYH5UmAZPrSg
140
+ UCaKLpauH3hH7vMjt1cbPtUw
141
+ UCaMbNKU_piTrmhHm-Ux3w1w
142
+ UCabfiEzAwNHfShgmt2Y--Yw
143
+ UCatg8cgQfntfjhGDVvB1CcQ
144
+ UCb6Jvgc9qW0sE4puekJb8EA
145
+ UCbJnRkk3Pl8FsCn1sRFRP5A
146
+ UCbLvqEItBO_cSUJrAGnZDUg
147
+ UCbNrSYar86ZP4f7k9DoF8BQ
148
+ UCblOcVvO-1X-iaeyv8nT34Q
149
+ UCc8mYQRLXaQIizk7M_NVXyw
150
+ UCcGpVGB7p8pcpuyVXFLxQhg
151
+ UCcLeiuZ_bPJeoTuKUiVtApQ
152
+ UCcftblae5aEnraa34d1FPQg
153
+ UCd0Yn5SKGaujdXCwk2TwmoA
154
+ UCd36LBcHwLrAbNH30SxSDSA
155
+ UCdZvc25NNcNLHd6IAUwmhKA
156
+ UCdc0AuchHvvQH5Q2ZhPKS4Q
157
+ UCdtk0XZd9cp3ZDr9b1Yh4rA
158
+ UCeCpCTOdQSCQHVc_0b_KDxw
159
+ UCeEqIv7lVwOOLnwxuuhQFuQ
160
+ UCeNdmyaAJfxk7Ut0q2mwEYA
161
+ UCelfK7CInt-Sm6VPQFtMnMQ
162
+ UCf4_ArJPd3vT2FmErBbEcUA
163
+ UCfIXdjDQH9Fau7y99_Orpjw
164
+ UCfOA_P5G1KfzCs2NK2Jbgtw
165
+ UCfSRqWaFCso_YfSJDmX57SA
166
+ UCfc9B9Xf31nOsrlU8KHSVlQ
167
+ UCfuTEc4aUK9v_m9PFN1qdXA
168
+ UCfxxwjehaooC3LBpoMVTLqg
169
+ UCg9X0uS63L4_z1M2ggMgOeg
170
+ UCgH3ODZVQQNv8SD774ApLOQ
171
+ UCgQx6leIwS_OuXVcRJyhaGA
172
+ UCgYaFZrthF3DwzT2uI5w7dg
173
+ UCgdLokRl-xkPuEAI71IKrJw
174
+ UCh1HH2c8bidZ_jWovXV0yYg
175
+ UCh3mGydGhqSqPGsa68tj73g
176
+ UChY1e-jzmr8usmOmcUZO-mw
177
+ UCiVHWCnex0BVxOH0Xku1rVg
178
+ UCiXjkefMyLGOzDybniQFFpg
179
+ UCiegRCalBotJFtQPRSfw4YQ
180
+ UCisNZz9PNzeu5oNFeVHbKTA
181
+ UCjDU4xfJAmqLQzg-w8wdFQA
182
+ UCjL2kNSzxjyw9elGrdbdmaA
183
+ UCjTzS-dtYS1wX-0LGdgZnWA
184
+ UCjXuZhd12PHlLWx2AcQGZcA
185
+ UCjlBVnMb-zhaTfAvMQDP9lQ
186
+ UCjyi6by44TTH0j_U3vXEGpA
187
+ UCk1Tx81B-jHRGRCU_YvO0gQ
188
+ UCkJu9agRvoPmq3_bkgjJbxg
189
+ UCkdjSBYWD9zN7ZrPVWFhLcg
190
+ UCkgFfGKT-1wI8FuMuGjh0kQ
191
+ UCkxbmufzXVf68d6hrsX0NeA
192
+ UCl9LJTi8CtX8iFsdeLMwq-A
193
+ UClJqI_j5qpgyUcq1VpK_DlQ
194
+ UCld6ez7tPz_q4HEsOVIB2Bg
195
+ UClr4KQSHx2lSuDtmQE56a8A
196
+ UClweSIcLYVqzHW-2OTfr-3A
197
+ UCmEOWndZDS5FMxUxGtlLhww
198
+ UCmIgKn7CF8frAV5wdFs2AwQ
199
+ UCmalWOci_SK9IetBfbeRgsA
200
+ UCmvYXGfm1n4vtDtBLaeQwrw
201
+ UCn-c-is8vErEPM-1r78-1IQ
202
+ UCnES4PHruL_MxebogC_zGzA
203
+ UCnVgAu4qIQG10Tg8FvxxD6g
204
+ UCnfmo4KkHHRDYOhyw9TMPRw
205
+ UCoMBHqM1_Pmd3YHild1YGlg
206
+ UCoUkd3WYKgJUOaV_yVLv6Ug
207
+ UCofYNEXHHVylft1xnNVJqmg
208
+ UCpNYbE8StrKO-Fuu3jVmDRQ
209
+ UCpkGFv7mqFVQqeHMQxZKlVQ
210
+ UCpnuaGaAwLXUOYJc6q1zMsA
211
+ UCqD2-9aE3WUvZNxBgf9E1Tw
212
+ UCqJT2LVdpv1upluJegKADZw
213
+ UCqp_emcvW1P27C7EqpnyV3Q
214
+ UCqzV52cyTydo2E2x_LfvuYg
215
+ UCrOpWTY2sbByAh8lOZSIJMg
216
+ UCrX4UaYW0aF7P7WfbueXFVg
217
+ UCrejptoJXkmw7TXxMgYuHNg
218
+ UCrsVUOmLa3HfFvf7WKAZGCA
219
+ UCsc4mwD4ha_OVzx7g-K6JFg
220
+ UCspjXHQpri5a8bD9k3nNDdQ
221
+ UCssg2PIQaacJK6vMaxjFypQ
222
+ UCtDjizhBtoLXLHq48n7_Gmw
223
+ UCtMlWVnP_ozMciD1ZE4i91g
224
+ UCtVaEEdhsSt1K6OkXwHDWBg
225
+ UCukH8wisjTfKfpi90knuRaA
226
+ UCuwJia_kBt7CenzQa_mr70w
227
+ UCvAWkeQUlVeEOwIowFlBI8Q
228
+ UCvmqU5FdkZ_F5Eml_cZKfvw
229
+ UCvshAbYgugPEG6aYAA1jEVg
230
+ UCvvzTkszo5eVo9hdf-6hPHg
231
+ UCvw3ecEpQzbojYEWz12bypw
232
+ UCwb-o8JMje-IIRDuwPII8Vw
233
+ UCwl0S6vpeLjAr1q7d--I3EA
234
+ UCwmZiChSryoWQCZMIQezgTg
235
+ UCwx0Aw3cmECMNBGCNckRgIg
236
+ UCx3G55dhoS-nCypRTc22aOQ
237
+ UCxI2tF0qHfgZrY2861Z1NpQ
238
+ UCxXMlvodTtcT_eO5DQKb4PQ
239
+ UCxw58f9l5fgyQzyTtmk4k6A
240
+ UCydwHbFRpLghukV7671QjBg
241
+ UCypI2Z4z-s5ic7IH3Vom-uA
242
+ UCys3xtL8VEUb_36e210_4Nw
243
+ UCzYgb2oC7ILtxWzk_uHsXAg
244
+ UCz_8H553XHFTJQjUtMoy_Ig
245
+ UCzks_AeKg9G0SpFwdPyqK9Q
246
+ UCzo3y2unXfuTcVfCgpMoRXA
247
+ UCztKHDTCyuhGDkEn9EXhczw
dataset/split/test.txt ADDED
@@ -0,0 +1,3063 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 530swnPWJrQ_17
2
+ 7ZVYcIsEeHo_130
3
+ RpNrYMA2y6c_110
4
+ RbFEpkuFCjI_18
5
+ u-Hpf2_wzB8_390
6
+ glZ5cH82ycE_210
7
+ p5Ady9RJyhU_90
8
+ 530swnPWJrQ_5
9
+ CXeKld-Irmk_69
10
+ Y7YBDESILgY_334
11
+ grWuEPQKFAs_140
12
+ fQukntBmFvY_240
13
+ aCCPRvNpcYk_20
14
+ 0FB9jMXMP8A_0
15
+ _yNwzbv3PeI_108
16
+ f2kvR5I8s3c_70
17
+ VvXNTF68hdE_270
18
+ fciO6_q2wk4_210
19
+ tmO6N6TBXoE_95
20
+ Wc_gzO9i38k_206
21
+ UG3nqEzgq00_380
22
+ fhuwLnHsH5U_744
23
+ bA_7toCijrk_18
24
+ 9X2wM6HD_og_1022
25
+ glZ5cH82ycE_600
26
+ samc7Y4r3fg_879
27
+ u-Hpf2_wzB8_90
28
+ RH5K2P6pH9Y_780
29
+ 6DHUZ1Jt4wo_10
30
+ CBMUhxJC6TU_250
31
+ WZ2zz4TfGvA_345
32
+ WZ2zz4TfGvA_315
33
+ fQukntBmFvY_10
34
+ _74aGilhTGU_3112
35
+ QO-pWw4_z8Y_50
36
+ AaculwvmaTA_1971
37
+ 6DHUZ1Jt4wo_1490
38
+ WU6WFEyfeH4_460
39
+ hSbaRwmJ5AA_1302
40
+ pxf-4iLOUVA_1101
41
+ zK3mQlK9ZVo_70
42
+ RpNrYMA2y6c_680
43
+ UfGDEXV2F60_161
44
+ dQaNzwqCUAA_291
45
+ hSbaRwmJ5AA_214
46
+ RbFEpkuFCjI_176
47
+ 7ZVYcIsEeHo_170
48
+ aIQnFp5sSc8_307
49
+ glZ5cH82ycE_110
50
+ grWuEPQKFAs_130
51
+ VQAGxC8mSzA_27
52
+ Wc_gzO9i38k_152
53
+ kSyessjQYeA_605
54
+ oOLW1t9vpVQ_470
55
+ WU6WFEyfeH4_660
56
+ fhuwLnHsH5U_216
57
+ Pz4HjQhZDmk_277
58
+ _74aGilhTGU_2881
59
+ RpNrYMA2y6c_240
60
+ qWpImMW4DHI_1619
61
+ RpNrYMA2y6c_690
62
+ tOJ6CGr-iho_200
63
+ fhuwLnHsH5U_1340
64
+ LQrZLRdjqww_220
65
+ 91jpE2P8SPM_35
66
+ _yNwzbv3PeI_133
67
+ yhFN_xVmNsI_50
68
+ 6DHUZ1Jt4wo_1440
69
+ hm65SlpTXZo_90
70
+ tmO6N6TBXoE_132
71
+ grWuEPQKFAs_30
72
+ yhFN_xVmNsI_580
73
+ 1WFJLucjK50_692
74
+ qvtEdv1WlUw_360
75
+ KvSsYaoSJGI_110
76
+ kSyessjQYeA_1722
77
+ yhFN_xVmNsI_180
78
+ 7ZVYcIsEeHo_140
79
+ _css5l3_vpY_155
80
+ f2kvR5I8s3c_120
81
+ LSeJeKHsUkw_39
82
+ WQzEsz-lfIc_320
83
+ RH5K2P6pH9Y_670
84
+ WQzEsz-lfIc_60
85
+ PVQiHhIVa48_359
86
+ YFGgXLvsEGc_543
87
+ samc7Y4r3fg_853
88
+ hSbaRwmJ5AA_848
89
+ grWuEPQKFAs_10
90
+ bfHVJJKqZUg_523
91
+ WQzEsz-lfIc_130
92
+ QO-pWw4_z8Y_120
93
+ RH5K2P6pH9Y_250
94
+ lOJBGAd0mSw_620
95
+ j2PE0mccihM_0
96
+ RbFEpkuFCjI_31
97
+ WU6WFEyfeH4_640
98
+ fQukntBmFvY_230
99
+ WQzEsz-lfIc_230
100
+ KVvDejzzQjM_132
101
+ xiPfXsNhgIc_160
102
+ _74aGilhTGU_1421
103
+ gyFx147_35Q_25
104
+ fciO6_q2wk4_230
105
+ oOLW1t9vpVQ_410
106
+ pC2WmY6bkB4_261
107
+ RpNrYMA2y6c_650
108
+ RH5K2P6pH9Y_660
109
+ 93eAayq6GO0_540
110
+ RH5K2P6pH9Y_800
111
+ WQzEsz-lfIc_260
112
+ LQrZLRdjqww_230
113
+ 6DHUZ1Jt4wo_450
114
+ 93eAayq6GO0_10
115
+ LQrZLRdjqww_430
116
+ 5WrI-nS59kA_400
117
+ Pz4HjQhZDmk_225
118
+ JUN314mwb90_65
119
+ eE5oue9yeFQ_172
120
+ RH5K2P6pH9Y_530
121
+ RH5K2P6pH9Y_200
122
+ WU6WFEyfeH4_130
123
+ 1WFJLucjK50_529
124
+ YFGgXLvsEGc_1565
125
+ RH5K2P6pH9Y_830
126
+ o5ILhtm2-Aw_197
127
+ bul6AM9JaDQ_856
128
+ eE5oue9yeFQ_148
129
+ aieThfuvmtY_168
130
+ Eeg_WJTTRX0_480
131
+ WU6WFEyfeH4_260
132
+ _74aGilhTGU_2833
133
+ CBMUhxJC6TU_470
134
+ Eeg_WJTTRX0_290
135
+ WQzEsz-lfIc_270
136
+ p5Ady9RJyhU_40
137
+ HT-N_iI3jug_10
138
+ RH5K2P6pH9Y_300
139
+ tt02LzCbIcU_110
140
+ RH5K2P6pH9Y_430
141
+ AaculwvmaTA_1983
142
+ fhuwLnHsH5U_684
143
+ DcMh9zgZbSg_640
144
+ 93eAayq6GO0_370
145
+ oOLW1t9vpVQ_200
146
+ b6L0bCePL0c_40
147
+ Pz4HjQhZDmk_99
148
+ qWpImMW4DHI_1645
149
+ aM9v-6LKKhE_240
150
+ GmtUEtUCX8o_347
151
+ eqn9IX4aKmc_590
152
+ kSyessjQYeA_2171
153
+ 7ZVYcIsEeHo_100
154
+ u-Hpf2_wzB8_190
155
+ RbFEpkuFCjI_42
156
+ YFGgXLvsEGc_576
157
+ xiPfXsNhgIc_280
158
+ TKPZf_P5_18_30
159
+ _74aGilhTGU_2809
160
+ qWpImMW4DHI_2003
161
+ rYKxKYUBcjo_124
162
+ p5Ady9RJyhU_30
163
+ zUGBl9WEJY8_1093
164
+ 6DHUZ1Jt4wo_810
165
+ HiaNsIscHPY_320
166
+ u-Hpf2_wzB8_250
167
+ n91RZ57a3mI_210
168
+ M8AHmUYaYbI_110
169
+ gyFx147_35Q_52
170
+ S_hpD7teoow_52
171
+ Eeg_WJTTRX0_450
172
+ GmtUEtUCX8o_712
173
+ yhFN_xVmNsI_270
174
+ fl-rc2-fb4Y_92
175
+ 9X2wM6HD_og_293
176
+ rYKxKYUBcjo_180
177
+ AaculwvmaTA_841
178
+ aM9v-6LKKhE_410
179
+ YXMbB_oVcgw_28
180
+ 1WFJLucjK50_320
181
+ p5Ady9RJyhU_50
182
+ UG3nqEzgq00_370
183
+ So9RUFpdPFU_71
184
+ fQukntBmFvY_70
185
+ eqn9IX4aKmc_526
186
+ WU6WFEyfeH4_70
187
+ fhuwLnHsH5U_1385
188
+ 530swnPWJrQ_76
189
+ LQrZLRdjqww_310
190
+ _74aGilhTGU_624
191
+ VvXNTF68hdE_190
192
+ Fq8kqMmSl-c_400
193
+ kSyessjQYeA_69
194
+ KvSsYaoSJGI_219
195
+ UG3nqEzgq00_660
196
+ So9RUFpdPFU_35
197
+ rYKxKYUBcjo_199
198
+ XiPamwUKnEo_113
199
+ qWpImMW4DHI_169
200
+ Fq8kqMmSl-c_240
201
+ Eeg_WJTTRX0_260
202
+ GmtUEtUCX8o_104
203
+ CBMUhxJC6TU_220
204
+ UG3nqEzgq00_220
205
+ 6DHUZ1Jt4wo_710
206
+ WQzEsz-lfIc_280
207
+ GGTOvP9OaXI_20
208
+ RH5K2P6pH9Y_740
209
+ QO-pWw4_z8Y_200
210
+ xiPfXsNhgIc_290
211
+ UG3nqEzgq00_680
212
+ pC2WmY6bkB4_191
213
+ 6DHUZ1Jt4wo_1400
214
+ aM9v-6LKKhE_550
215
+ oOLW1t9vpVQ_80
216
+ I_M0f1c59oc_32
217
+ pxf-4iLOUVA_2217
218
+ q2DXQeG55N0_660
219
+ Eeg_WJTTRX0_430
220
+ KVvDejzzQjM_35
221
+ f2kvR5I8s3c_80
222
+ dQaNzwqCUAA_967
223
+ 6DHUZ1Jt4wo_1460
224
+ oOLW1t9vpVQ_150
225
+ yhFN_xVmNsI_70
226
+ Y7YBDESILgY_978
227
+ hSbaRwmJ5AA_2493
228
+ qWpImMW4DHI_375
229
+ AaculwvmaTA_706
230
+ Hmlec3vVbq8_246
231
+ 1WFJLucjK50_1049
232
+ DcMh9zgZbSg_150
233
+ DcMh9zgZbSg_670
234
+ CBMUhxJC6TU_150
235
+ 7ZVYcIsEeHo_80
236
+ rYKxKYUBcjo_0
237
+ zWkaEsCIg5Q_358
238
+ 6DHUZ1Jt4wo_1410
239
+ Pz4HjQhZDmk_53
240
+ QO-pWw4_z8Y_440
241
+ tmO6N6TBXoE_106
242
+ yhFN_xVmNsI_520
243
+ KVvDejzzQjM_218
244
+ lz4TkjaNVPY_27
245
+ WU6WFEyfeH4_240
246
+ TKPZf_P5_18_50
247
+ fhuwLnHsH5U_146
248
+ 93eAayq6GO0_60
249
+ aM9v-6LKKhE_140
250
+ WQzEsz-lfIc_640
251
+ eqn9IX4aKmc_438
252
+ n91RZ57a3mI_450
253
+ KklDLhM2r1M_220
254
+ hSbaRwmJ5AA_2001
255
+ grWuEPQKFAs_210
256
+ JUN314mwb90_207
257
+ qWpImMW4DHI_1281
258
+ 7ZVYcIsEeHo_30
259
+ 93eAayq6GO0_440
260
+ GmtUEtUCX8o_967
261
+ q2DXQeG55N0_680
262
+ WQzEsz-lfIc_630
263
+ _74aGilhTGU_1604
264
+ UG3nqEzgq00_270
265
+ GmtUEtUCX8o_39
266
+ Wc_gzO9i38k_507
267
+ KrEHdKxlNDQ_2
268
+ RH5K2P6pH9Y_420
269
+ WZ2zz4TfGvA_335
270
+ fhuwLnHsH5U_835
271
+ UG3nqEzgq00_190
272
+ aM9v-6LKKhE_480
273
+ _74aGilhTGU_3209
274
+ f2kvR5I8s3c_130
275
+ pC2WmY6bkB4_695
276
+ _74aGilhTGU_2779
277
+ GmtUEtUCX8o_978
278
+ dQaNzwqCUAA_626
279
+ RH5K2P6pH9Y_380
280
+ xMVdww-5394_430
281
+ wmL6FiKKqvQ_186
282
+ hSbaRwmJ5AA_1858
283
+ qWpImMW4DHI_1863
284
+ yhFN_xVmNsI_450
285
+ M8AHmUYaYbI_180
286
+ Fq8kqMmSl-c_120
287
+ f2kvR5I8s3c_150
288
+ Y7YBDESILgY_344
289
+ WQzEsz-lfIc_460
290
+ PVQiHhIVa48_1349
291
+ GmtUEtUCX8o_1126
292
+ mGoWETQeUMk_10
293
+ 6DHUZ1Jt4wo_1270
294
+ Wc_gzO9i38k_252
295
+ 6DHUZ1Jt4wo_780
296
+ GmtUEtUCX8o_25
297
+ Y7YBDESILgY_988
298
+ samc7Y4r3fg_901
299
+ TETd0Q2wnbY_561
300
+ PVQiHhIVa48_448
301
+ VvXNTF68hdE_30
302
+ HiaNsIscHPY_340
303
+ eE5oue9yeFQ_104
304
+ 6DHUZ1Jt4wo_1320
305
+ aM9v-6LKKhE_340
306
+ pRaDY4sIHhU_91
307
+ yhFN_xVmNsI_100
308
+ oOLW1t9vpVQ_160
309
+ pC2WmY6bkB4_622
310
+ qWpImMW4DHI_1787
311
+ b6L0bCePL0c_20
312
+ M8AHmUYaYbI_70
313
+ aieThfuvmtY_6
314
+ fciO6_q2wk4_160
315
+ zUGBl9WEJY8_1103
316
+ _74aGilhTGU_1897
317
+ rYKxKYUBcjo_294
318
+ -3GumCmyAIk_172
319
+ samc7Y4r3fg_148
320
+ 1whJPpizoDA_111
321
+ UfGDEXV2F60_75
322
+ WQzEsz-lfIc_370
323
+ Y7YBDESILgY_3183
324
+ 6DHUZ1Jt4wo_890
325
+ CBMUhxJC6TU_30
326
+ oOLW1t9vpVQ_90
327
+ Eeg_WJTTRX0_90
328
+ yhFN_xVmNsI_640
329
+ kMZSoni0etA_70
330
+ pC2WmY6bkB4_636
331
+ UG3nqEzgq00_300
332
+ 9X2wM6HD_og_127
333
+ Fq8kqMmSl-c_520
334
+ hm65SlpTXZo_110
335
+ o5ILhtm2-Aw_100
336
+ Y8BLz-u0u7c_65
337
+ rYKxKYUBcjo_93
338
+ qvtEdv1WlUw_530
339
+ dQaNzwqCUAA_47
340
+ eqn9IX4aKmc_163
341
+ WQzEsz-lfIc_700
342
+ F0RJ0xrzSqc_31
343
+ rBKCBiIU72w_80
344
+ RH5K2P6pH9Y_20
345
+ rBKCBiIU72w_70
346
+ WQzEsz-lfIc_90
347
+ V5IVN81wYrI_50
348
+ 6DHUZ1Jt4wo_1140
349
+ AaculwvmaTA_769
350
+ hm65SlpTXZo_80
351
+ Eeg_WJTTRX0_370
352
+ n91RZ57a3mI_890
353
+ WU6WFEyfeH4_50
354
+ 6DHUZ1Jt4wo_940
355
+ 1whJPpizoDA_96
356
+ pC2WmY6bkB4_770
357
+ 93eAayq6GO0_600
358
+ _yNwzbv3PeI_211
359
+ Y7YBDESILgY_2837
360
+ lOJBGAd0mSw_220
361
+ AaculwvmaTA_1682
362
+ ZBesGWBVkeY_46
363
+ b6L0bCePL0c_290
364
+ yhFN_xVmNsI_420
365
+ QO-pWw4_z8Y_680
366
+ hSbaRwmJ5AA_1503
367
+ iAk8ZXOL57Q_70
368
+ fP0NllADuo0_40
369
+ qWpImMW4DHI_1982
370
+ _74aGilhTGU_2394
371
+ 5WrI-nS59kA_670
372
+ kSyessjQYeA_1910
373
+ yhFN_xVmNsI_150
374
+ hSbaRwmJ5AA_1893
375
+ _74aGilhTGU_3298
376
+ V5IVN81wYrI_60
377
+ _74aGilhTGU_825
378
+ fciO6_q2wk4_80
379
+ RpNrYMA2y6c_180
380
+ UG3nqEzgq00_390
381
+ n91RZ57a3mI_140
382
+ WU6WFEyfeH4_310
383
+ DcMh9zgZbSg_160
384
+ tmO6N6TBXoE_151
385
+ WZ2zz4TfGvA_355
386
+ p5Ady9RJyhU_70
387
+ yhFN_xVmNsI_500
388
+ GmtUEtUCX8o_835
389
+ lRiyTbH0D24_120
390
+ Eeg_WJTTRX0_240
391
+ Fq8kqMmSl-c_170
392
+ tmO6N6TBXoE_161
393
+ WU6WFEyfeH4_630
394
+ 6DHUZ1Jt4wo_230
395
+ PVQiHhIVa48_472
396
+ PVQiHhIVa48_1331
397
+ Y7YBDESILgY_3409
398
+ 6DHUZ1Jt4wo_40
399
+ _74aGilhTGU_1306
400
+ Fq8kqMmSl-c_340
401
+ SCiA9KmQIEw_20
402
+ u-Hpf2_wzB8_330
403
+ VvXNTF68hdE_590
404
+ _css5l3_vpY_177
405
+ GmtUEtUCX8o_953
406
+ GmtUEtUCX8o_241
407
+ hSbaRwmJ5AA_1959
408
+ aM9v-6LKKhE_960
409
+ LSeJeKHsUkw_98
410
+ 6DHUZ1Jt4wo_1130
411
+ hSbaRwmJ5AA_1704
412
+ UG3nqEzgq00_550
413
+ dQaNzwqCUAA_301
414
+ glZ5cH82ycE_150
415
+ WU6WFEyfeH4_30
416
+ Wc_gzO9i38k_228
417
+ yhFN_xVmNsI_110
418
+ pxf-4iLOUVA_951
419
+ KVvDejzzQjM_24
420
+ bul6AM9JaDQ_421
421
+ yhFN_xVmNsI_10
422
+ GGTOvP9OaXI_80
423
+ vPOh8bauanA_13
424
+ yhFN_xVmNsI_400
425
+ oOLW1t9vpVQ_550
426
+ OWN_J9FGZ5I_346
427
+ hSbaRwmJ5AA_2138
428
+ yhFN_xVmNsI_550
429
+ Eeg_WJTTRX0_150
430
+ Eeg_WJTTRX0_180
431
+ 7ZVYcIsEeHo_150
432
+ hSbaRwmJ5AA_2814
433
+ fciO6_q2wk4_40
434
+ xiPfXsNhgIc_140
435
+ lRiyTbH0D24_250
436
+ hSbaRwmJ5AA_1762
437
+ _74aGilhTGU_2799
438
+ 6DHUZ1Jt4wo_520
439
+ 7ZVYcIsEeHo_330
440
+ Eeg_WJTTRX0_270
441
+ RH5K2P6pH9Y_40
442
+ WQzEsz-lfIc_650
443
+ LQrZLRdjqww_50
444
+ oOLW1t9vpVQ_260
445
+ HiaNsIscHPY_110
446
+ dQaNzwqCUAA_229
447
+ PVQiHhIVa48_297
448
+ aieThfuvmtY_386
449
+ hSbaRwmJ5AA_1905
450
+ RH5K2P6pH9Y_370
451
+ hSbaRwmJ5AA_1923
452
+ aM9v-6LKKhE_490
453
+ GmtUEtUCX8o_70
454
+ CBMUhxJC6TU_460
455
+ GmtUEtUCX8o_82
456
+ CBMUhxJC6TU_380
457
+ OLBCzxzvBZM_49
458
+ u-Hpf2_wzB8_420
459
+ 7ZVYcIsEeHo_40
460
+ aieThfuvmtY_294
461
+ lRiyTbH0D24_170
462
+ yhFN_xVmNsI_30
463
+ RH5K2P6pH9Y_640
464
+ uuzlaAPBXYs_344
465
+ _74aGilhTGU_1767
466
+ 9X2wM6HD_og_736
467
+ RbDBfWg_6QU_196
468
+ 91jpE2P8SPM_127
469
+ pxf-4iLOUVA_1654
470
+ TETd0Q2wnbY_257
471
+ AaculwvmaTA_491
472
+ VvXNTF68hdE_240
473
+ rYKxKYUBcjo_159
474
+ _74aGilhTGU_2843
475
+ pC2WmY6bkB4_251
476
+ fhuwLnHsH5U_588
477
+ 5WrI-nS59kA_410
478
+ kSyessjQYeA_1362
479
+ _74aGilhTGU_3388
480
+ UG3nqEzgq00_40
481
+ bGnivk-jepU_159
482
+ aM9v-6LKKhE_720
483
+ qWpImMW4DHI_2213
484
+ b6L0bCePL0c_210
485
+ oOLW1t9vpVQ_460
486
+ kSyessjQYeA_585
487
+ hSbaRwmJ5AA_2709
488
+ b6L0bCePL0c_270
489
+ 6DHUZ1Jt4wo_300
490
+ JxMFgRCZuo0_130
491
+ aIQnFp5sSc8_48
492
+ aieThfuvmtY_627
493
+ lRiyTbH0D24_110
494
+ qWpImMW4DHI_909
495
+ fciO6_q2wk4_170
496
+ GGTOvP9OaXI_30
497
+ eqn9IX4aKmc_409
498
+ P72n97ONayA_30
499
+ RH5K2P6pH9Y_730
500
+ RpNrYMA2y6c_350
501
+ hSbaRwmJ5AA_675
502
+ 1whJPpizoDA_238
503
+ XiPamwUKnEo_48
504
+ aieThfuvmtY_406
505
+ _74aGilhTGU_3265
506
+ Fq8kqMmSl-c_320
507
+ Fq8kqMmSl-c_70
508
+ J2PYwi8fy-M_48
509
+ 6DHUZ1Jt4wo_510
510
+ glZ5cH82ycE_240
511
+ hX1dECWoEoc_21
512
+ OWN_J9FGZ5I_100
513
+ TETd0Q2wnbY_131
514
+ qWpImMW4DHI_1441
515
+ Fq8kqMmSl-c_410
516
+ RbFEpkuFCjI_319
517
+ yhFN_xVmNsI_320
518
+ SCiA9KmQIEw_140
519
+ RbFEpkuFCjI_378
520
+ _74aGilhTGU_2744
521
+ 7ZVYcIsEeHo_370
522
+ samc7Y4r3fg_2227
523
+ hSbaRwmJ5AA_1749
524
+ HiaNsIscHPY_220
525
+ lz4TkjaNVPY_94
526
+ RH5K2P6pH9Y_510
527
+ L2Tv5v__9m4_107
528
+ _74aGilhTGU_3168
529
+ hX1dECWoEoc_41
530
+ UG3nqEzgq00_520
531
+ CBMUhxJC6TU_450
532
+ QqMf0qWsCYM_187
533
+ q2DXQeG55N0_170
534
+ AyVtAJzOJlE_783
535
+ yhFN_xVmNsI_140
536
+ yhFN_xVmNsI_250
537
+ eqn9IX4aKmc_509
538
+ 7ZVYcIsEeHo_350
539
+ zK3mQlK9ZVo_40
540
+ DGtWuPemYc4_360
541
+ UG3nqEzgq00_400
542
+ hSbaRwmJ5AA_1991
543
+ qWpImMW4DHI_198
544
+ kSyessjQYeA_2160
545
+ zWkaEsCIg5Q_312
546
+ Y8BLz-u0u7c_447
547
+ _74aGilhTGU_1626
548
+ Eeg_WJTTRX0_10
549
+ AaculwvmaTA_2008
550
+ qvtEdv1WlUw_380
551
+ UG3nqEzgq00_640
552
+ kSyessjQYeA_1332
553
+ 6DHUZ1Jt4wo_1370
554
+ RH5K2P6pH9Y_410
555
+ fhuwLnHsH5U_722
556
+ UG3nqEzgq00_700
557
+ bul6AM9JaDQ_541
558
+ RH5K2P6pH9Y_170
559
+ j2PE0mccihM_22
560
+ hSbaRwmJ5AA_1647
561
+ V8UBNttMWJo_55
562
+ qWpImMW4DHI_1535
563
+ fciO6_q2wk4_50
564
+ Eeg_WJTTRX0_70
565
+ kSyessjQYeA_1846
566
+ MHjYjOXxx-E_300
567
+ aieThfuvmtY_1381
568
+ nDu57CGqbLM_28
569
+ 9X2wM6HD_og_272
570
+ Y8BLz-u0u7c_121
571
+ -3GumCmyAIk_301
572
+ samc7Y4r3fg_23
573
+ eqn9IX4aKmc_69
574
+ XiPamwUKnEo_222
575
+ SCiA9KmQIEw_150
576
+ aM9v-6LKKhE_180
577
+ bul6AM9JaDQ_114
578
+ zK3mQlK9ZVo_80
579
+ OLBCzxzvBZM_38
580
+ Fq8kqMmSl-c_270
581
+ UG3nqEzgq00_450
582
+ MHjYjOXxx-E_240
583
+ WU6WFEyfeH4_730
584
+ fhuwLnHsH5U_576
585
+ CBMUhxJC6TU_340
586
+ pxf-4iLOUVA_1018
587
+ aieThfuvmtY_396
588
+ 93eAayq6GO0_90
589
+ WU6WFEyfeH4_350
590
+ Y7YBDESILgY_1023
591
+ LSeJeKHsUkw_71
592
+ hm65SlpTXZo_50
593
+ _74aGilhTGU_2071
594
+ pC2WmY6bkB4_590
595
+ YXMbB_oVcgw_124
596
+ bul6AM9JaDQ_395
597
+ _74aGilhTGU_481
598
+ qWpImMW4DHI_1261
599
+ lRiyTbH0D24_140
600
+ 9X2wM6HD_og_835
601
+ yhFN_xVmNsI_430
602
+ aieThfuvmtY_16
603
+ qWpImMW4DHI_1918
604
+ Wc_gzO9i38k_437
605
+ samc7Y4r3fg_640
606
+ eqn9IX4aKmc_193
607
+ pC2WmY6bkB4_317
608
+ wmL6FiKKqvQ_221
609
+ 93eAayq6GO0_290
610
+ RH5K2P6pH9Y_210
611
+ RpNrYMA2y6c_80
612
+ 6DHUZ1Jt4wo_240
613
+ OLBCzxzvBZM_17
614
+ qvtEdv1WlUw_60
615
+ G-XZhKqQAHU_129
616
+ KVvDejzzQjM_158
617
+ RpNrYMA2y6c_900
618
+ KrEHdKxlNDQ_28
619
+ u-Hpf2_wzB8_450
620
+ RpNrYMA2y6c_450
621
+ _css5l3_vpY_214
622
+ _74aGilhTGU_663
623
+ TKPZf_P5_18_10
624
+ 4C2hPdCmtbc_70
625
+ aM9v-6LKKhE_750
626
+ bul6AM9JaDQ_678
627
+ DcMh9zgZbSg_390
628
+ 6DHUZ1Jt4wo_1090
629
+ YFGgXLvsEGc_1922
630
+ hm65SlpTXZo_60
631
+ GmtUEtUCX8o_196
632
+ Y8BLz-u0u7c_474
633
+ b6L0bCePL0c_340
634
+ Y7YBDESILgY_2252
635
+ oOLW1t9vpVQ_270
636
+ fQukntBmFvY_200
637
+ lOJBGAd0mSw_270
638
+ yhFN_xVmNsI_330
639
+ AaculwvmaTA_1256
640
+ Y8BLz-u0u7c_267
641
+ hSbaRwmJ5AA_964
642
+ 6DHUZ1Jt4wo_440
643
+ aM9v-6LKKhE_760
644
+ OWN_J9FGZ5I_247
645
+ SCiA9KmQIEw_110
646
+ _74aGilhTGU_2081
647
+ hSbaRwmJ5AA_3356
648
+ Pz4HjQhZDmk_158
649
+ 6DHUZ1Jt4wo_1120
650
+ zUGBl9WEJY8_1006
651
+ xiPfXsNhgIc_210
652
+ 5WQ87UIJHQU_132
653
+ V5IVN81wYrI_70
654
+ gyFx147_35Q_208
655
+ fhuwLnHsH5U_291
656
+ GGTOvP9OaXI_90
657
+ q2DXQeG55N0_780
658
+ Wc_gzO9i38k_240
659
+ DGtWuPemYc4_762
660
+ UG3nqEzgq00_410
661
+ kSyessjQYeA_1834
662
+ eE5oue9yeFQ_160
663
+ eqn9IX4aKmc_266
664
+ pC2WmY6bkB4_227
665
+ lRiyTbH0D24_60
666
+ yhFN_xVmNsI_130
667
+ P72n97ONayA_20
668
+ WU6WFEyfeH4_230
669
+ kSyessjQYeA_1148
670
+ dQaNzwqCUAA_573
671
+ BZ0yzt_-gtM_5
672
+ hSbaRwmJ5AA_992
673
+ 6DHUZ1Jt4wo_430
674
+ aieThfuvmtY_274
675
+ _74aGilhTGU_3329
676
+ I_M0f1c59oc_46
677
+ JUN314mwb90_325
678
+ hSbaRwmJ5AA_1774
679
+ _74aGilhTGU_2552
680
+ KVvDejzzQjM_148
681
+ pC2WmY6bkB4_875
682
+ KVvDejzzQjM_263
683
+ WU6WFEyfeH4_340
684
+ AaculwvmaTA_783
685
+ u-Hpf2_wzB8_80
686
+ Wc_gzO9i38k_300
687
+ LQrZLRdjqww_250
688
+ RH5K2P6pH9Y_140
689
+ TETd0Q2wnbY_411
690
+ RH5K2P6pH9Y_580
691
+ 6DHUZ1Jt4wo_950
692
+ LQrZLRdjqww_360
693
+ WQzEsz-lfIc_410
694
+ KVvDejzzQjM_247
695
+ dQaNzwqCUAA_281
696
+ V8UBNttMWJo_96
697
+ dQaNzwqCUAA_848
698
+ WU6WFEyfeH4_100
699
+ fhuwLnHsH5U_541
700
+ _74aGilhTGU_2894
701
+ kMZSoni0etA_100
702
+ sYeeLyTrTSI_123
703
+ aM9v-6LKKhE_150
704
+ 6DHUZ1Jt4wo_1190
705
+ AaculwvmaTA_280
706
+ _74aGilhTGU_1381
707
+ aieThfuvmtY_416
708
+ Y8BLz-u0u7c_505
709
+ CBMUhxJC6TU_290
710
+ Y7YBDESILgY_1276
711
+ _74aGilhTGU_2572
712
+ yhFN_xVmNsI_560
713
+ zUGBl9WEJY8_851
714
+ rBKCBiIU72w_40
715
+ _css5l3_vpY_198
716
+ aM9v-6LKKhE_730
717
+ _yNwzbv3PeI_67
718
+ tt02LzCbIcU_60
719
+ WU6WFEyfeH4_560
720
+ f2kvR5I8s3c_140
721
+ aM9v-6LKKhE_610
722
+ RH5K2P6pH9Y_700
723
+ _74aGilhTGU_3027
724
+ j2PE0mccihM_37
725
+ Y7YBDESILgY_1083
726
+ RbFEpkuFCjI_277
727
+ 6DHUZ1Jt4wo_720
728
+ samc7Y4r3fg_1195
729
+ nWlQWH7qP34_36
730
+ VvXNTF68hdE_400
731
+ qWpImMW4DHI_273
732
+ dQaNzwqCUAA_524
733
+ Fq8kqMmSl-c_280
734
+ JUN314mwb90_196
735
+ WU6WFEyfeH4_160
736
+ Fq8kqMmSl-c_40
737
+ 6DHUZ1Jt4wo_1220
738
+ _74aGilhTGU_3409
739
+ QO-pWw4_z8Y_130
740
+ pC2WmY6bkB4_662
741
+ yhFN_xVmNsI_20
742
+ qWpImMW4DHI_1574
743
+ 6DHUZ1Jt4wo_1160
744
+ GmtUEtUCX8o_149
745
+ RpNrYMA2y6c_660
746
+ I_M0f1c59oc_127
747
+ glZ5cH82ycE_590
748
+ _74aGilhTGU_1592
749
+ 93eAayq6GO0_380
750
+ zja_kP413FM_103
751
+ CBMUhxJC6TU_480
752
+ fhuwLnHsH5U_86
753
+ qvtEdv1WlUw_560
754
+ RpNrYMA2y6c_300
755
+ -3GumCmyAIk_68
756
+ QO-pWw4_z8Y_530
757
+ RH5K2P6pH9Y_450
758
+ 6DHUZ1Jt4wo_1330
759
+ RH5K2P6pH9Y_820
760
+ P72n97ONayA_10
761
+ PVQiHhIVa48_247
762
+ hSbaRwmJ5AA_400
763
+ lRiyTbH0D24_270
764
+ WU6WFEyfeH4_490
765
+ QO-pWw4_z8Y_260
766
+ DcMh9zgZbSg_410
767
+ CBMUhxJC6TU_170
768
+ fQukntBmFvY_180
769
+ 93eAayq6GO0_310
770
+ q2DXQeG55N0_820
771
+ 7ZVYcIsEeHo_380
772
+ UG3nqEzgq00_140
773
+ Y7YBDESILgY_294
774
+ qvtEdv1WlUw_160
775
+ qWpImMW4DHI_1424
776
+ WZ2zz4TfGvA_325
777
+ JUN314mwb90_302
778
+ RbFEpkuFCjI_288
779
+ hSbaRwmJ5AA_1789
780
+ CXeKld-Irmk_32
781
+ bul6AM9JaDQ_802
782
+ Fq8kqMmSl-c_430
783
+ WU6WFEyfeH4_320
784
+ GmtUEtUCX8o_750
785
+ QO-pWw4_z8Y_480
786
+ UWT1xTEeP_s_306
787
+ hSbaRwmJ5AA_248
788
+ lOJBGAd0mSw_150
789
+ u-Hpf2_wzB8_10
790
+ aM9v-6LKKhE_600
791
+ JUN314mwb90_244
792
+ TKPZf_P5_18_40
793
+ 3GSTGzYkHks_60
794
+ 5WQ87UIJHQU_147
795
+ CBMUhxJC6TU_600
796
+ aM9v-6LKKhE_700
797
+ pxf-4iLOUVA_836
798
+ hSbaRwmJ5AA_1663
799
+ LSeJeKHsUkw_84
800
+ 530swnPWJrQ_48
801
+ aIQnFp5sSc8_16
802
+ Wc_gzO9i38k_62
803
+ Fq8kqMmSl-c_450
804
+ qWpImMW4DHI_2093
805
+ L2Tv5v__9m4_180
806
+ VvXNTF68hdE_20
807
+ f2kvR5I8s3c_30
808
+ u-Hpf2_wzB8_270
809
+ KvSsYaoSJGI_209
810
+ qvtEdv1WlUw_70
811
+ TETd0Q2wnbY_267
812
+ 6DHUZ1Jt4wo_1300
813
+ _74aGilhTGU_2927
814
+ GmtUEtUCX8o_402
815
+ u-Hpf2_wzB8_70
816
+ Y7YBDESILgY_2267
817
+ qvtEdv1WlUw_50
818
+ QO-pWw4_z8Y_700
819
+ AaculwvmaTA_445
820
+ RpNrYMA2y6c_870
821
+ QO-pWw4_z8Y_280
822
+ fhuwLnHsH5U_32
823
+ WU6WFEyfeH4_590
824
+ gyFx147_35Q_300
825
+ UG3nqEzgq00_160
826
+ b6L0bCePL0c_200
827
+ GGTOvP9OaXI_10
828
+ zK3mQlK9ZVo_110
829
+ RH5K2P6pH9Y_460
830
+ JUN314mwb90_368
831
+ WU6WFEyfeH4_500
832
+ Y7YBDESILgY_931
833
+ hSbaRwmJ5AA_1485
834
+ rBKCBiIU72w_10
835
+ Fq8kqMmSl-c_140
836
+ MHjYjOXxx-E_310
837
+ WU6WFEyfeH4_290
838
+ lRiyTbH0D24_380
839
+ Wc_gzO9i38k_390
840
+ 93eAayq6GO0_220
841
+ pdxDaxTpFoY_92
842
+ aM9v-6LKKhE_950
843
+ rYKxKYUBcjo_110
844
+ RH5K2P6pH9Y_840
845
+ UG3nqEzgq00_330
846
+ AaculwvmaTA_1829
847
+ b6L0bCePL0c_100
848
+ bfHVJJKqZUg_593
849
+ q2DXQeG55N0_40
850
+ _74aGilhTGU_81
851
+ n91RZ57a3mI_860
852
+ pRaDY4sIHhU_101
853
+ u-Hpf2_wzB8_380
854
+ vPOh8bauanA_295
855
+ JUN314mwb90_143
856
+ QO-pWw4_z8Y_500
857
+ 9X2wM6HD_og_438
858
+ bul6AM9JaDQ_655
859
+ VQAGxC8mSzA_111
860
+ 2XhYnQ5QC4E_64
861
+ 5WrI-nS59kA_550
862
+ dQaNzwqCUAA_666
863
+ dQaNzwqCUAA_870
864
+ JUN314mwb90_184
865
+ QO-pWw4_z8Y_40
866
+ q2DXQeG55N0_830
867
+ WU6WFEyfeH4_520
868
+ eqn9IX4aKmc_567
869
+ 6DHUZ1Jt4wo_1350
870
+ 6DHUZ1Jt4wo_1500
871
+ CXeKld-Irmk_53
872
+ DcMh9zgZbSg_380
873
+ hSbaRwmJ5AA_1152
874
+ Y7YBDESILgY_1389
875
+ dQaNzwqCUAA_716
876
+ Fq8kqMmSl-c_200
877
+ 2XhYnQ5QC4E_76
878
+ YXMbB_oVcgw_104
879
+ M8AHmUYaYbI_120
880
+ lOJBGAd0mSw_600
881
+ WQzEsz-lfIc_600
882
+ pdxDaxTpFoY_82
883
+ hSbaRwmJ5AA_3106
884
+ n91RZ57a3mI_130
885
+ qvtEdv1WlUw_450
886
+ CBMUhxJC6TU_140
887
+ Fq8kqMmSl-c_30
888
+ fhuwLnHsH5U_646
889
+ J2PYwi8fy-M_19
890
+ GmtUEtUCX8o_1116
891
+ aM9v-6LKKhE_830
892
+ fQukntBmFvY_80
893
+ CBMUhxJC6TU_440
894
+ 5WQ87UIJHQU_98
895
+ f2kvR5I8s3c_40
896
+ oOLW1t9vpVQ_320
897
+ _74aGilhTGU_263
898
+ 1whJPpizoDA_132
899
+ Y7YBDESILgY_818
900
+ grWuEPQKFAs_20
901
+ fhuwLnHsH5U_440
902
+ aM9v-6LKKhE_470
903
+ 6DHUZ1Jt4wo_660
904
+ q2DXQeG55N0_640
905
+ 3GSTGzYkHks_90
906
+ 6DHUZ1Jt4wo_320
907
+ MHjYjOXxx-E_250
908
+ fciO6_q2wk4_110
909
+ Fq8kqMmSl-c_360
910
+ Pz4HjQhZDmk_136
911
+ yhFN_xVmNsI_390
912
+ grWuEPQKFAs_220
913
+ Wc_gzO9i38k_407
914
+ lRiyTbH0D24_160
915
+ Y7YBDESILgY_767
916
+ yhFN_xVmNsI_310
917
+ _74aGilhTGU_1917
918
+ Y8BLz-u0u7c_436
919
+ zWkaEsCIg5Q_426
920
+ WU6WFEyfeH4_600
921
+ samc7Y4r3fg_381
922
+ aieThfuvmtY_528
923
+ Eeg_WJTTRX0_460
924
+ RH5K2P6pH9Y_850
925
+ WU6WFEyfeH4_330
926
+ RH5K2P6pH9Y_650
927
+ Pz4HjQhZDmk_147
928
+ bfHVJJKqZUg_556
929
+ qWpImMW4DHI_1596
930
+ yhFN_xVmNsI_190
931
+ RbFEpkuFCjI_116
932
+ ZBesGWBVkeY_58
933
+ QO-pWw4_z8Y_360
934
+ aM9v-6LKKhE_460
935
+ eqn9IX4aKmc_538
936
+ Fq8kqMmSl-c_190
937
+ fQukntBmFvY_150
938
+ _yNwzbv3PeI_56
939
+ lRiyTbH0D24_20
940
+ V5IVN81wYrI_40
941
+ PVQiHhIVa48_325
942
+ Y7YBDESILgY_463
943
+ aM9v-6LKKhE_450
944
+ lRiyTbH0D24_210
945
+ Wc_gzO9i38k_196
946
+ qvtEdv1WlUw_490
947
+ n91RZ57a3mI_510
948
+ CBMUhxJC6TU_50
949
+ QO-pWw4_z8Y_380
950
+ RH5K2P6pH9Y_860
951
+ zK3mQlK9ZVo_10
952
+ b6L0bCePL0c_350
953
+ UG3nqEzgq00_230
954
+ RbFEpkuFCjI_90
955
+ oOLW1t9vpVQ_360
956
+ QO-pWw4_z8Y_190
957
+ XiPamwUKnEo_123
958
+ u-Hpf2_wzB8_220
959
+ RpNrYMA2y6c_150
960
+ UG3nqEzgq00_470
961
+ Y7YBDESILgY_1292
962
+ qvtEdv1WlUw_100
963
+ MHjYjOXxx-E_320
964
+ oOLW1t9vpVQ_110
965
+ Y8BLz-u0u7c_231
966
+ 93eAayq6GO0_160
967
+ u-Hpf2_wzB8_40
968
+ u-Hpf2_wzB8_320
969
+ qvtEdv1WlUw_470
970
+ aIQnFp5sSc8_6
971
+ 93eAayq6GO0_120
972
+ CBMUhxJC6TU_90
973
+ 6DHUZ1Jt4wo_20
974
+ UG3nqEzgq00_620
975
+ _74aGilhTGU_2131
976
+ RH5K2P6pH9Y_500
977
+ _74aGilhTGU_2453
978
+ J2PYwi8fy-M_37
979
+ 6DHUZ1Jt4wo_280
980
+ 7ZVYcIsEeHo_10
981
+ qWpImMW4DHI_1060
982
+ xiPfXsNhgIc_200
983
+ JUN314mwb90_131
984
+ xMVdww-5394_10
985
+ aM9v-6LKKhE_500
986
+ aM9v-6LKKhE_170
987
+ RH5K2P6pH9Y_160
988
+ YXMbB_oVcgw_94
989
+ b6L0bCePL0c_130
990
+ 93eAayq6GO0_300
991
+ UWT1xTEeP_s_151
992
+ Y8BLz-u0u7c_197
993
+ u-Hpf2_wzB8_60
994
+ 93eAayq6GO0_320
995
+ Eeg_WJTTRX0_60
996
+ fhuwLnHsH5U_452
997
+ 1WFJLucjK50_122
998
+ WQzEsz-lfIc_580
999
+ ZBXiIs_4H6M_113
1000
+ RbDBfWg_6QU_112
1001
+ 6DHUZ1Jt4wo_1070
1002
+ hSbaRwmJ5AA_3309
1003
+ o5ILhtm2-Aw_176
1004
+ grWuEPQKFAs_190
1005
+ WU6WFEyfeH4_220
1006
+ WQzEsz-lfIc_180
1007
+ GGTOvP9OaXI_70
1008
+ xiPfXsNhgIc_250
1009
+ n91RZ57a3mI_60
1010
+ f2kvR5I8s3c_100
1011
+ 1WFJLucjK50_1060
1012
+ Fq8kqMmSl-c_480
1013
+ b6L0bCePL0c_230
1014
+ aM9v-6LKKhE_350
1015
+ UG3nqEzgq00_170
1016
+ fQukntBmFvY_20
1017
+ QO-pWw4_z8Y_590
1018
+ _74aGilhTGU_2967
1019
+ qWpImMW4DHI_108
1020
+ qWpImMW4DHI_238
1021
+ hSbaRwmJ5AA_2083
1022
+ RH5K2P6pH9Y_750
1023
+ TKPZf_P5_18_20
1024
+ Y7YBDESILgY_2935
1025
+ PVQiHhIVa48_622
1026
+ p5Ady9RJyhU_60
1027
+ WQzEsz-lfIc_420
1028
+ _74aGilhTGU_1116
1029
+ WU6WFEyfeH4_430
1030
+ hSbaRwmJ5AA_2661
1031
+ qWpImMW4DHI_852
1032
+ yhFN_xVmNsI_530
1033
+ VvXNTF68hdE_530
1034
+ _74aGilhTGU_3143
1035
+ 91jpE2P8SPM_106
1036
+ Fq8kqMmSl-c_460
1037
+ u-Hpf2_wzB8_30
1038
+ zUGBl9WEJY8_912
1039
+ 6DHUZ1Jt4wo_1180
1040
+ RH5K2P6pH9Y_550
1041
+ glZ5cH82ycE_200
1042
+ 5WQ87UIJHQU_17
1043
+ RH5K2P6pH9Y_30
1044
+ qWpImMW4DHI_1942
1045
+ 6DHUZ1Jt4wo_930
1046
+ bul6AM9JaDQ_632
1047
+ HiaNsIscHPY_180
1048
+ kollE03EaUw_102
1049
+ Fq8kqMmSl-c_490
1050
+ kMZSoni0etA_10
1051
+ JEbPgn3clPk_150
1052
+ u-Hpf2_wzB8_400
1053
+ 93eAayq6GO0_140
1054
+ yhFN_xVmNsI_260
1055
+ dqZ2CiRm7f4_526
1056
+ u-Hpf2_wzB8_230
1057
+ Fq8kqMmSl-c_180
1058
+ WU6WFEyfeH4_720
1059
+ WU6WFEyfeH4_170
1060
+ DGtWuPemYc4_859
1061
+ qWpImMW4DHI_2057
1062
+ YFGgXLvsEGc_485
1063
+ 6DHUZ1Jt4wo_960
1064
+ o5ILhtm2-Aw_112
1065
+ lRiyTbH0D24_300
1066
+ aCCPRvNpcYk_10
1067
+ q2DXQeG55N0_20
1068
+ fQukntBmFvY_60
1069
+ 93eAayq6GO0_40
1070
+ vPOh8bauanA_191
1071
+ 93eAayq6GO0_190
1072
+ 6DHUZ1Jt4wo_1020
1073
+ f2kvR5I8s3c_160
1074
+ lRiyTbH0D24_450
1075
+ XiPamwUKnEo_232
1076
+ Fq8kqMmSl-c_220
1077
+ eE5oue9yeFQ_354
1078
+ J2PYwi8fy-M_58
1079
+ exjMJHYEssE_97
1080
+ CBMUhxJC6TU_430
1081
+ DcMh9zgZbSg_170
1082
+ I_M0f1c59oc_115
1083
+ 9X2wM6HD_og_1058
1084
+ Eeg_WJTTRX0_110
1085
+ WU6WFEyfeH4_120
1086
+ AyVtAJzOJlE_1188
1087
+ HiaNsIscHPY_210
1088
+ YFGgXLvsEGc_593
1089
+ yhFN_xVmNsI_540
1090
+ 6DHUZ1Jt4wo_200
1091
+ MHjYjOXxx-E_160
1092
+ pC2WmY6bkB4_497
1093
+ Y8BLz-u0u7c_485
1094
+ Y8BLz-u0u7c_97
1095
+ GGTOvP9OaXI_130
1096
+ rBKCBiIU72w_110
1097
+ yhFN_xVmNsI_480
1098
+ zja_kP413FM_113
1099
+ bul6AM9JaDQ_240
1100
+ GmtUEtUCX8o_813
1101
+ rYKxKYUBcjo_371
1102
+ grWuEPQKFAs_150
1103
+ rBKCBiIU72w_50
1104
+ xiPfXsNhgIc_220
1105
+ qWpImMW4DHI_1514
1106
+ oOLW1t9vpVQ_250
1107
+ kMZSoni0etA_120
1108
+ Eeg_WJTTRX0_470
1109
+ bul6AM9JaDQ_206
1110
+ AaculwvmaTA_66
1111
+ H6rMi6s5lRQ_20
1112
+ QO-pWw4_z8Y_250
1113
+ WQzEsz-lfIc_330
1114
+ lOJBGAd0mSw_470
1115
+ yhFN_xVmNsI_240
1116
+ Y8BLz-u0u7c_221
1117
+ 93eAayq6GO0_590
1118
+ JxMFgRCZuo0_200
1119
+ 9X2wM6HD_og_696
1120
+ pC2WmY6bkB4_748
1121
+ _yNwzbv3PeI_16
1122
+ RpNrYMA2y6c_840
1123
+ bGnivk-jepU_73
1124
+ ZBXiIs_4H6M_41
1125
+ VvXNTF68hdE_660
1126
+ fhuwLnHsH5U_866
1127
+ oOLW1t9vpVQ_480
1128
+ fhuwLnHsH5U_732
1129
+ bfHVJJKqZUg_296
1130
+ aM9v-6LKKhE_770
1131
+ eqn9IX4aKmc_152
1132
+ YFGgXLvsEGc_558
1133
+ lRiyTbH0D24_130
1134
+ rYKxKYUBcjo_82
1135
+ u-Hpf2_wzB8_120
1136
+ AaculwvmaTA_1845
1137
+ MHjYjOXxx-E_80
1138
+ qWpImMW4DHI_1797
1139
+ hSbaRwmJ5AA_1738
1140
+ HT-N_iI3jug_40
1141
+ UG3nqEzgq00_120
1142
+ xMVdww-5394_200
1143
+ lOJBGAd0mSw_230
1144
+ JUN314mwb90_270
1145
+ GmtUEtUCX8o_508
1146
+ 9X2wM6HD_og_933
1147
+ RbFEpkuFCjI_434
1148
+ dQaNzwqCUAA_175
1149
+ 6DHUZ1Jt4wo_1100
1150
+ f2kvR5I8s3c_20
1151
+ zUGBl9WEJY8_824
1152
+ _css5l3_vpY_166
1153
+ zK3mQlK9ZVo_120
1154
+ WQzEsz-lfIc_550
1155
+ MHjYjOXxx-E_110
1156
+ PVQiHhIVa48_524
1157
+ Eeg_WJTTRX0_350
1158
+ zWkaEsCIg5Q_375
1159
+ 91jpE2P8SPM_51
1160
+ RpNrYMA2y6c_140
1161
+ 9X2wM6HD_og_615
1162
+ UG3nqEzgq00_530
1163
+ _74aGilhTGU_1971
1164
+ RH5K2P6pH9Y_280
1165
+ Wc_gzO9i38k_126
1166
+ rBKCBiIU72w_30
1167
+ KVvDejzzQjM_282
1168
+ aieThfuvmtY_937
1169
+ RbFEpkuFCjI_400
1170
+ pC2WmY6bkB4_484
1171
+ WN4g4INMbIw_210
1172
+ 6DHUZ1Jt4wo_100
1173
+ Eeg_WJTTRX0_160
1174
+ lRiyTbH0D24_360
1175
+ 9X2wM6HD_og_1068
1176
+ o5ILhtm2-Aw_88
1177
+ lRiyTbH0D24_350
1178
+ n91RZ57a3mI_790
1179
+ RpNrYMA2y6c_540
1180
+ JxMFgRCZuo0_160
1181
+ RH5K2P6pH9Y_570
1182
+ WQzEsz-lfIc_500
1183
+ AaculwvmaTA_191
1184
+ 93eAayq6GO0_200
1185
+ yhFN_xVmNsI_280
1186
+ Hmlec3vVbq8_267
1187
+ Y7YBDESILgY_904
1188
+ aM9v-6LKKhE_380
1189
+ hSbaRwmJ5AA_605
1190
+ yhFN_xVmNsI_60
1191
+ RpNrYMA2y6c_90
1192
+ WQzEsz-lfIc_660
1193
+ WU6WFEyfeH4_440
1194
+ 6DHUZ1Jt4wo_340
1195
+ zUGBl9WEJY8_585
1196
+ LQrZLRdjqww_350
1197
+ bul6AM9JaDQ_382
1198
+ PVQiHhIVa48_509
1199
+ DcMh9zgZbSg_100
1200
+ Wc_gzO9i38k_284
1201
+ wmL6FiKKqvQ_53
1202
+ rYKxKYUBcjo_249
1203
+ grWuEPQKFAs_260
1204
+ M8AHmUYaYbI_90
1205
+ 6DHUZ1Jt4wo_690
1206
+ Y7YBDESILgY_919
1207
+ ZBesGWBVkeY_101
1208
+ V8UBNttMWJo_73
1209
+ RH5K2P6pH9Y_790
1210
+ Fq8kqMmSl-c_60
1211
+ gyFx147_35Q_13
1212
+ 6DHUZ1Jt4wo_910
1213
+ RpNrYMA2y6c_170
1214
+ RbFEpkuFCjI_161
1215
+ kSyessjQYeA_339
1216
+ qWpImMW4DHI_865
1217
+ pC2WmY6bkB4_758
1218
+ qvtEdv1WlUw_140
1219
+ VvXNTF68hdE_520
1220
+ qWpImMW4DHI_1322
1221
+ 7ZVYcIsEeHo_200
1222
+ Hmlec3vVbq8_304
1223
+ aM9v-6LKKhE_640
1224
+ OWN_J9FGZ5I_120
1225
+ b6L0bCePL0c_250
1226
+ eqn9IX4aKmc_451
1227
+ kMZSoni0etA_20
1228
+ WU6WFEyfeH4_270
1229
+ kSyessjQYeA_1551
1230
+ RH5K2P6pH9Y_150
1231
+ kSyessjQYeA_956
1232
+ WQzEsz-lfIc_530
1233
+ samc7Y4r3fg_262
1234
+ grWuEPQKFAs_40
1235
+ GVhSOeTOYag_1619
1236
+ 6DHUZ1Jt4wo_830
1237
+ RpNrYMA2y6c_290
1238
+ Y7YBDESILgY_877
1239
+ lOJBGAd0mSw_170
1240
+ hm65SlpTXZo_100
1241
+ UG3nqEzgq00_200
1242
+ WU6WFEyfeH4_710
1243
+ Y7YBDESILgY_3501
1244
+ 7ZVYcIsEeHo_60
1245
+ KvSsYaoSJGI_139
1246
+ 6DHUZ1Jt4wo_400
1247
+ LSeJeKHsUkw_108
1248
+ kMZSoni0etA_80
1249
+ CBMUhxJC6TU_590
1250
+ pxf-4iLOUVA_1111
1251
+ yhFN_xVmNsI_410
1252
+ qWpImMW4DHI_56
1253
+ YXMbB_oVcgw_83
1254
+ glZ5cH82ycE_280
1255
+ grWuEPQKFAs_60
1256
+ oOLW1t9vpVQ_280
1257
+ fciO6_q2wk4_220
1258
+ yhFN_xVmNsI_40
1259
+ qWpImMW4DHI_1307
1260
+ 6DHUZ1Jt4wo_250
1261
+ q2DXQeG55N0_840
1262
+ JUN314mwb90_356
1263
+ _yNwzbv3PeI_122
1264
+ kSyessjQYeA_1601
1265
+ n91RZ57a3mI_490
1266
+ zUGBl9WEJY8_1065
1267
+ RbFEpkuFCjI_410
1268
+ glZ5cH82ycE_580
1269
+ bfHVJJKqZUg_99
1270
+ 6DHUZ1Jt4wo_1480
1271
+ RH5K2P6pH9Y_520
1272
+ fQukntBmFvY_110
1273
+ RH5K2P6pH9Y_720
1274
+ WQzEsz-lfIc_520
1275
+ 6DHUZ1Jt4wo_920
1276
+ Y7YBDESILgY_493
1277
+ dQaNzwqCUAA_556
1278
+ zK3mQlK9ZVo_60
1279
+ eqn9IX4aKmc_365
1280
+ WU6WFEyfeH4_10
1281
+ q2DXQeG55N0_420
1282
+ grWuEPQKFAs_240
1283
+ eqn9IX4aKmc_278
1284
+ WU6WFEyfeH4_740
1285
+ WQzEsz-lfIc_610
1286
+ hSbaRwmJ5AA_1243
1287
+ 93eAayq6GO0_170
1288
+ VvXNTF68hdE_180
1289
+ 7ZVYcIsEeHo_280
1290
+ RpNrYMA2y6c_630
1291
+ bfHVJJKqZUg_441
1292
+ hSbaRwmJ5AA_2758
1293
+ HT-N_iI3jug_20
1294
+ UfGDEXV2F60_128
1295
+ kSyessjQYeA_1680
1296
+ fhuwLnHsH5U_227
1297
+ qvtEdv1WlUw_210
1298
+ zWkaEsCIg5Q_291
1299
+ fhuwLnHsH5U_921
1300
+ hSbaRwmJ5AA_692
1301
+ zja_kP413FM_90
1302
+ WU6WFEyfeH4_470
1303
+ lOJBGAd0mSw_100
1304
+ 2XhYnQ5QC4E_168
1305
+ tt02LzCbIcU_80
1306
+ QO-pWw4_z8Y_730
1307
+ 6DHUZ1Jt4wo_1510
1308
+ RbDBfWg_6QU_88
1309
+ 2XhYnQ5QC4E_51
1310
+ HiaNsIscHPY_330
1311
+ RH5K2P6pH9Y_490
1312
+ yhFN_xVmNsI_170
1313
+ hX1dECWoEoc_51
1314
+ 6DHUZ1Jt4wo_600
1315
+ _74aGilhTGU_21
1316
+ 6DHUZ1Jt4wo_560
1317
+ qWpImMW4DHI_1853
1318
+ Y7YBDESILgY_264
1319
+ qvtEdv1WlUw_130
1320
+ RpNrYMA2y6c_640
1321
+ UfGDEXV2F60_106
1322
+ hm65SlpTXZo_40
1323
+ QO-pWw4_z8Y_340
1324
+ Fq8kqMmSl-c_330
1325
+ Y7YBDESILgY_1311
1326
+ YXMbB_oVcgw_54
1327
+ AaculwvmaTA_228
1328
+ qWpImMW4DHI_1634
1329
+ AaculwvmaTA_241
1330
+ bul6AM9JaDQ_127
1331
+ pxf-4iLOUVA_0
1332
+ Eeg_WJTTRX0_280
1333
+ Wc_gzO9i38k_15
1334
+ 93eAayq6GO0_230
1335
+ hSbaRwmJ5AA_2934
1336
+ 93eAayq6GO0_210
1337
+ Y7YBDESILgY_838
1338
+ L2Tv5v__9m4_14
1339
+ oOLW1t9vpVQ_140
1340
+ WU6WFEyfeH4_480
1341
+ oOLW1t9vpVQ_210
1342
+ dqZ2CiRm7f4_111
1343
+ 9X2wM6HD_og_170
1344
+ pxf-4iLOUVA_846
1345
+ _yNwzbv3PeI_90
1346
+ lOJBGAd0mSw_320
1347
+ PVQiHhIVa48_1061
1348
+ Fq8kqMmSl-c_370
1349
+ pC2WmY6bkB4_142
1350
+ WQzEsz-lfIc_570
1351
+ fciO6_q2wk4_190
1352
+ 6DHUZ1Jt4wo_1340
1353
+ H6rMi6s5lRQ_140
1354
+ 6DHUZ1Jt4wo_470
1355
+ aM9v-6LKKhE_390
1356
+ AaculwvmaTA_410
1357
+ _74aGilhTGU_557
1358
+ 93eAayq6GO0_180
1359
+ DcMh9zgZbSg_270
1360
+ xiPfXsNhgIc_150
1361
+ UG3nqEzgq00_110
1362
+ WU6WFEyfeH4_680
1363
+ RbFEpkuFCjI_388
1364
+ HiaNsIscHPY_130
1365
+ WU6WFEyfeH4_360
1366
+ kMZSoni0etA_90
1367
+ qWpImMW4DHI_1843
1368
+ DGtWuPemYc4_1491
1369
+ P72n97ONayA_40
1370
+ yhFN_xVmNsI_220
1371
+ _74aGilhTGU_229
1372
+ aM9v-6LKKhE_400
1373
+ HiaNsIscHPY_380
1374
+ hSbaRwmJ5AA_2541
1375
+ -3GumCmyAIk_82
1376
+ hSbaRwmJ5AA_2481
1377
+ kSyessjQYeA_2208
1378
+ Wc_gzO9i38k_380
1379
+ glZ5cH82ycE_740
1380
+ 9X2wM6HD_og_66
1381
+ 1whJPpizoDA_27
1382
+ oOLW1t9vpVQ_300
1383
+ 6DHUZ1Jt4wo_840
1384
+ JxMFgRCZuo0_220
1385
+ AaculwvmaTA_455
1386
+ fhuwLnHsH5U_303
1387
+ hm65SlpTXZo_150
1388
+ lz4TkjaNVPY_78
1389
+ WU6WFEyfeH4_390
1390
+ H6rMi6s5lRQ_40
1391
+ dQaNzwqCUAA_858
1392
+ qvtEdv1WlUw_500
1393
+ LQrZLRdjqww_420
1394
+ lRiyTbH0D24_330
1395
+ 2XhYnQ5QC4E_92
1396
+ RH5K2P6pH9Y_180
1397
+ Y7YBDESILgY_3555
1398
+ Y7YBDESILgY_392
1399
+ HiaNsIscHPY_230
1400
+ RbDBfWg_6QU_186
1401
+ KVvDejzzQjM_6
1402
+ oOLW1t9vpVQ_440
1403
+ Y7YBDESILgY_1103
1404
+ yhFN_xVmNsI_290
1405
+ QO-pWw4_z8Y_640
1406
+ UG3nqEzgq00_100
1407
+ _74aGilhTGU_31
1408
+ WQzEsz-lfIc_480
1409
+ fhuwLnHsH5U_614
1410
+ 93eAayq6GO0_20
1411
+ CBMUhxJC6TU_390
1412
+ ZBXiIs_4H6M_67
1413
+ fQukntBmFvY_210
1414
+ QO-pWw4_z8Y_770
1415
+ V5IVN81wYrI_90
1416
+ hSbaRwmJ5AA_3156
1417
+ RbFEpkuFCjI_140
1418
+ WU6WFEyfeH4_550
1419
+ p5Ady9RJyhU_10
1420
+ HiaNsIscHPY_200
1421
+ kSyessjQYeA_2084
1422
+ samc7Y4r3fg_1225
1423
+ QO-pWw4_z8Y_230
1424
+ pC2WmY6bkB4_48
1425
+ eqn9IX4aKmc_624
1426
+ qvtEdv1WlUw_220
1427
+ Eeg_WJTTRX0_490
1428
+ hSbaRwmJ5AA_1555
1429
+ WQzEsz-lfIc_490
1430
+ aieThfuvmtY_304
1431
+ bfHVJJKqZUg_310
1432
+ oOLW1t9vpVQ_450
1433
+ qvtEdv1WlUw_290
1434
+ 9X2wM6HD_og_848
1435
+ yhFN_xVmNsI_510
1436
+ 93eAayq6GO0_250
1437
+ RH5K2P6pH9Y_320
1438
+ XiPamwUKnEo_188
1439
+ SCiA9KmQIEw_40
1440
+ Y7YBDESILgY_209
1441
+ QO-pWw4_z8Y_410
1442
+ F0RJ0xrzSqc_20
1443
+ pC2WmY6bkB4_888
1444
+ xMVdww-5394_170
1445
+ Y7YBDESILgY_473
1446
+ YFGgXLvsEGc_2604
1447
+ 1WFJLucjK50_1025
1448
+ tmO6N6TBXoE_173
1449
+ xMVdww-5394_80
1450
+ LQrZLRdjqww_380
1451
+ 1whJPpizoDA_218
1452
+ sYeeLyTrTSI_110
1453
+ RH5K2P6pH9Y_480
1454
+ fciO6_q2wk4_140
1455
+ fl-rc2-fb4Y_82
1456
+ WU6WFEyfeH4_110
1457
+ AaculwvmaTA_1960
1458
+ dQaNzwqCUAA_836
1459
+ yhFN_xVmNsI_80
1460
+ _yNwzbv3PeI_160
1461
+ mGoWETQeUMk_20
1462
+ TKPZf_P5_18_80
1463
+ 6DHUZ1Jt4wo_330
1464
+ 6DHUZ1Jt4wo_1040
1465
+ dqZ2CiRm7f4_597
1466
+ Y7YBDESILgY_863
1467
+ lRiyTbH0D24_10
1468
+ fhuwLnHsH5U_847
1469
+ rYKxKYUBcjo_392
1470
+ KvSsYaoSJGI_32
1471
+ Y7YBDESILgY_304
1472
+ Y7YBDESILgY_370
1473
+ zWkaEsCIg5Q_277
1474
+ YXMbB_oVcgw_64
1475
+ CBMUhxJC6TU_160
1476
+ RH5K2P6pH9Y_120
1477
+ grWuEPQKFAs_70
1478
+ dQaNzwqCUAA_454
1479
+ M8AHmUYaYbI_170
1480
+ RH5K2P6pH9Y_290
1481
+ Y8BLz-u0u7c_247
1482
+ Wc_gzO9i38k_262
1483
+ fQukntBmFvY_40
1484
+ AaculwvmaTA_1936
1485
+ zWkaEsCIg5Q_154
1486
+ 6DHUZ1Jt4wo_140
1487
+ DGtWuPemYc4_1025
1488
+ AaculwvmaTA_1648
1489
+ MHjYjOXxx-E_120
1490
+ aieThfuvmtY_36
1491
+ 6DHUZ1Jt4wo_1380
1492
+ zWkaEsCIg5Q_458
1493
+ Fq8kqMmSl-c_290
1494
+ fciO6_q2wk4_120
1495
+ samc7Y4r3fg_2085
1496
+ WU6WFEyfeH4_300
1497
+ 93eAayq6GO0_420
1498
+ fciO6_q2wk4_60
1499
+ WU6WFEyfeH4_190
1500
+ SCiA9KmQIEw_100
1501
+ samc7Y4r3fg_810
1502
+ UWT1xTEeP_s_295
1503
+ 6DHUZ1Jt4wo_190
1504
+ aCCPRvNpcYk_45
1505
+ UG3nqEzgq00_250
1506
+ Y7YBDESILgY_807
1507
+ bul6AM9JaDQ_175
1508
+ qWpImMW4DHI_97
1509
+ pC2WmY6bkB4_288
1510
+ 91jpE2P8SPM_85
1511
+ RbFEpkuFCjI_151
1512
+ hSbaRwmJ5AA_1677
1513
+ 6DHUZ1Jt4wo_160
1514
+ Y7YBDESILgY_1063
1515
+ q2DXQeG55N0_10
1516
+ 6DHUZ1Jt4wo_1450
1517
+ VvXNTF68hdE_170
1518
+ WU6WFEyfeH4_140
1519
+ q2DXQeG55N0_610
1520
+ sYeeLyTrTSI_30
1521
+ M8AHmUYaYbI_60
1522
+ _74aGilhTGU_1350
1523
+ yhFN_xVmNsI_160
1524
+ H6rMi6s5lRQ_30
1525
+ OWN_J9FGZ5I_131
1526
+ fhuwLnHsH5U_528
1527
+ 7ZVYcIsEeHo_340
1528
+ -3GumCmyAIk_100
1529
+ QO-pWw4_z8Y_70
1530
+ TETd0Q2wnbY_839
1531
+ 6DHUZ1Jt4wo_540
1532
+ fhuwLnHsH5U_463
1533
+ KVvDejzzQjM_86
1534
+ KvSsYaoSJGI_198
1535
+ _74aGilhTGU_546
1536
+ pC2WmY6bkB4_328
1537
+ qvtEdv1WlUw_40
1538
+ 530swnPWJrQ_157
1539
+ xMVdww-5394_110
1540
+ lRiyTbH0D24_310
1541
+ hSbaRwmJ5AA_193
1542
+ lOJBGAd0mSw_570
1543
+ yhFN_xVmNsI_210
1544
+ 7ZVYcIsEeHo_240
1545
+ pxf-4iLOUVA_2244
1546
+ DcMh9zgZbSg_220
1547
+ 6DHUZ1Jt4wo_420
1548
+ Eeg_WJTTRX0_40
1549
+ _74aGilhTGU_2673
1550
+ wmL6FiKKqvQ_64
1551
+ samc7Y4r3fg_889
1552
+ 6DHUZ1Jt4wo_210
1553
+ RbFEpkuFCjI_445
1554
+ Y7YBDESILgY_999
1555
+ _74aGilhTGU_1830
1556
+ 6DHUZ1Jt4wo_1390
1557
+ WU6WFEyfeH4_610
1558
+ 6DHUZ1Jt4wo_990
1559
+ WQzEsz-lfIc_170
1560
+ 6DHUZ1Jt4wo_410
1561
+ Eeg_WJTTRX0_340
1562
+ GmtUEtUCX8o_1096
1563
+ fhuwLnHsH5U_782
1564
+ 6DHUZ1Jt4wo_610
1565
+ pC2WmY6bkB4_683
1566
+ qWpImMW4DHI_613
1567
+ bul6AM9JaDQ_563
1568
+ QO-pWw4_z8Y_270
1569
+ o5ILhtm2-Aw_247
1570
+ grWuEPQKFAs_170
1571
+ Wc_gzO9i38k_425
1572
+ grWuEPQKFAs_180
1573
+ tmO6N6TBXoE_119
1574
+ XiPamwUKnEo_134
1575
+ dQaNzwqCUAA_901
1576
+ LSeJeKHsUkw_23
1577
+ hX1dECWoEoc_31
1578
+ _74aGilhTGU_1362
1579
+ xMVdww-5394_30
1580
+ HiaNsIscHPY_150
1581
+ WQzEsz-lfIc_430
1582
+ hm65SlpTXZo_130
1583
+ u-Hpf2_wzB8_160
1584
+ f2kvR5I8s3c_90
1585
+ aM9v-6LKKhE_220
1586
+ 6DHUZ1Jt4wo_380
1587
+ CBMUhxJC6TU_70
1588
+ eqn9IX4aKmc_132
1589
+ eqn9IX4aKmc_578
1590
+ pC2WmY6bkB4_380
1591
+ qWpImMW4DHI_1549
1592
+ GmtUEtUCX8o_93
1593
+ dQaNzwqCUAA_935
1594
+ Eeg_WJTTRX0_140
1595
+ zWkaEsCIg5Q_83
1596
+ WQzEsz-lfIc_620
1597
+ HiaNsIscHPY_30
1598
+ q2DXQeG55N0_160
1599
+ UG3nqEzgq00_510
1600
+ HiaNsIscHPY_350
1601
+ AaculwvmaTA_1812
1602
+ Wc_gzO9i38k_474
1603
+ -3GumCmyAIk_151
1604
+ hSbaRwmJ5AA_3190
1605
+ zK3mQlK9ZVo_30
1606
+ bul6AM9JaDQ_621
1607
+ 6DHUZ1Jt4wo_1280
1608
+ 9X2wM6HD_og_303
1609
+ rBKCBiIU72w_60
1610
+ pC2WmY6bkB4_302
1611
+ grWuEPQKFAs_160
1612
+ glZ5cH82ycE_270
1613
+ PVQiHhIVa48_661
1614
+ CBMUhxJC6TU_270
1615
+ Fq8kqMmSl-c_510
1616
+ wmL6FiKKqvQ_106
1617
+ 1WFJLucjK50_1070
1618
+ lOJBGAd0mSw_250
1619
+ xiPfXsNhgIc_180
1620
+ QO-pWw4_z8Y_600
1621
+ L2Tv5v__9m4_170
1622
+ vPOh8bauanA_307
1623
+ UG3nqEzgq00_460
1624
+ hSbaRwmJ5AA_180
1625
+ VvXNTF68hdE_620
1626
+ CBMUhxJC6TU_200
1627
+ SCiA9KmQIEw_200
1628
+ WQzEsz-lfIc_400
1629
+ bul6AM9JaDQ_432
1630
+ 6DHUZ1Jt4wo_150
1631
+ xiPfXsNhgIc_90
1632
+ oOLW1t9vpVQ_30
1633
+ fciO6_q2wk4_10
1634
+ VvXNTF68hdE_640
1635
+ VvXNTF68hdE_410
1636
+ 6DHUZ1Jt4wo_50
1637
+ dQaNzwqCUAA_702
1638
+ _74aGilhTGU_2562
1639
+ Eeg_WJTTRX0_50
1640
+ Pz4HjQhZDmk_264
1641
+ qvtEdv1WlUw_570
1642
+ glZ5cH82ycE_570
1643
+ dqZ2CiRm7f4_516
1644
+ hSbaRwmJ5AA_3345
1645
+ Fq8kqMmSl-c_260
1646
+ CBMUhxJC6TU_190
1647
+ SCiA9KmQIEw_30
1648
+ qWpImMW4DHI_87
1649
+ WQzEsz-lfIc_540
1650
+ lRiyTbH0D24_290
1651
+ pxf-4iLOUVA_2254
1652
+ 6DHUZ1Jt4wo_110
1653
+ WU6WFEyfeH4_200
1654
+ 6DHUZ1Jt4wo_970
1655
+ _74aGilhTGU_2694
1656
+ dQaNzwqCUAA_78
1657
+ GmtUEtUCX8o_1085
1658
+ aM9v-6LKKhE_820
1659
+ Fq8kqMmSl-c_380
1660
+ 6DHUZ1Jt4wo_1110
1661
+ 6DHUZ1Jt4wo_1170
1662
+ qWpImMW4DHI_877
1663
+ _74aGilhTGU_3247
1664
+ 6DHUZ1Jt4wo_1000
1665
+ oOLW1t9vpVQ_230
1666
+ oOLW1t9vpVQ_540
1667
+ tt02LzCbIcU_40
1668
+ 5WrI-nS59kA_500
1669
+ bGnivk-jepU_49
1670
+ samc7Y4r3fg_514
1671
+ hSbaRwmJ5AA_2470
1672
+ hSbaRwmJ5AA_660
1673
+ 93eAayq6GO0_580
1674
+ lOJBGAd0mSw_580
1675
+ rBKCBiIU72w_20
1676
+ samc7Y4r3fg_2095
1677
+ u-Hpf2_wzB8_360
1678
+ 6DHUZ1Jt4wo_740
1679
+ WQzEsz-lfIc_200
1680
+ aM9v-6LKKhE_130
1681
+ QO-pWw4_z8Y_400
1682
+ YFGgXLvsEGc_496
1683
+ q2DXQeG55N0_70
1684
+ u-Hpf2_wzB8_430
1685
+ MHjYjOXxx-E_200
1686
+ pxf-4iLOUVA_931
1687
+ RbDBfWg_6QU_206
1688
+ qWpImMW4DHI_2196
1689
+ UG3nqEzgq00_540
1690
+ lRiyTbH0D24_340
1691
+ Fq8kqMmSl-c_230
1692
+ 1whJPpizoDA_65
1693
+ samc7Y4r3fg_1185
1694
+ zWkaEsCIg5Q_301
1695
+ kollE03EaUw_4
1696
+ WQzEsz-lfIc_220
1697
+ zK3mQlK9ZVo_20
1698
+ lRiyTbH0D24_40
1699
+ 1WFJLucjK50_457
1700
+ M8AHmUYaYbI_40
1701
+ Fq8kqMmSl-c_130
1702
+ 7ZVYcIsEeHo_110
1703
+ YFGgXLvsEGc_99
1704
+ RH5K2P6pH9Y_630
1705
+ RH5K2P6pH9Y_340
1706
+ fciO6_q2wk4_30
1707
+ oOLW1t9vpVQ_350
1708
+ WQzEsz-lfIc_40
1709
+ Y8BLz-u0u7c_209
1710
+ _74aGilhTGU_2531
1711
+ RbFEpkuFCjI_106
1712
+ fhuwLnHsH5U_157
1713
+ n91RZ57a3mI_500
1714
+ vPOh8bauanA_221
1715
+ 91jpE2P8SPM_69
1716
+ YFGgXLvsEGc_608
1717
+ b6L0bCePL0c_300
1718
+ aM9v-6LKKhE_160
1719
+ qWpImMW4DHI_1465
1720
+ samc7Y4r3fg_2265
1721
+ RH5K2P6pH9Y_560
1722
+ lRiyTbH0D24_50
1723
+ pC2WmY6bkB4_649
1724
+ _74aGilhTGU_3277
1725
+ _74aGilhTGU_732
1726
+ _74aGilhTGU_2710
1727
+ XiPamwUKnEo_161
1728
+ fciO6_q2wk4_240
1729
+ yhFN_xVmNsI_340
1730
+ QO-pWw4_z8Y_580
1731
+ u-Hpf2_wzB8_210
1732
+ TKPZf_P5_18_90
1733
+ 93eAayq6GO0_30
1734
+ zK3mQlK9ZVo_130
1735
+ S_hpD7teoow_8
1736
+ hSbaRwmJ5AA_2508
1737
+ WQzEsz-lfIc_510
1738
+ bul6AM9JaDQ_61
1739
+ aM9v-6LKKhE_560
1740
+ QO-pWw4_z8Y_510
1741
+ hSbaRwmJ5AA_647
1742
+ o5ILhtm2-Aw_289
1743
+ fhuwLnHsH5U_1155
1744
+ 93eAayq6GO0_560
1745
+ tOJ6CGr-iho_80
1746
+ CBMUhxJC6TU_310
1747
+ QO-pWw4_z8Y_450
1748
+ hSbaRwmJ5AA_3389
1749
+ oOLW1t9vpVQ_380
1750
+ v5f-G9Uu5dE_4
1751
+ zK3mQlK9ZVo_140
1752
+ CBMUhxJC6TU_230
1753
+ _74aGilhTGU_1639
1754
+ v5f-G9Uu5dE_60
1755
+ Y7YBDESILgY_1265
1756
+ aM9v-6LKKhE_440
1757
+ oOLW1t9vpVQ_130
1758
+ pC2WmY6bkB4_101
1759
+ Y7YBDESILgY_2948
1760
+ _74aGilhTGU_2822
1761
+ u-Hpf2_wzB8_130
1762
+ _css5l3_vpY_187
1763
+ Eeg_WJTTRX0_410
1764
+ GmtUEtUCX8o_519
1765
+ QO-pWw4_z8Y_140
1766
+ aieThfuvmtY_690
1767
+ CBMUhxJC6TU_240
1768
+ UG3nqEzgq00_240
1769
+ UG3nqEzgq00_650
1770
+ n91RZ57a3mI_910
1771
+ GGTOvP9OaXI_110
1772
+ WU6WFEyfeH4_510
1773
+ KvSsYaoSJGI_233
1774
+ _74aGilhTGU_3067
1775
+ 93eAayq6GO0_390
1776
+ qvtEdv1WlUw_260
1777
+ 6DHUZ1Jt4wo_480
1778
+ Hmlec3vVbq8_278
1779
+ OWN_J9FGZ5I_55
1780
+ QO-pWw4_z8Y_650
1781
+ WU6WFEyfeH4_690
1782
+ WU6WFEyfeH4_540
1783
+ aM9v-6LKKhE_520
1784
+ qWpImMW4DHI_1009
1785
+ n91RZ57a3mI_230
1786
+ aIQnFp5sSc8_246
1787
+ WU6WFEyfeH4_210
1788
+ qWpImMW4DHI_2243
1789
+ WQzEsz-lfIc_350
1790
+ fhuwLnHsH5U_767
1791
+ ZBXiIs_4H6M_30
1792
+ GmtUEtUCX8o_496
1793
+ eqn9IX4aKmc_292
1794
+ eqn9IX4aKmc_613
1795
+ p5Ady9RJyhU_130
1796
+ yhFN_xVmNsI_120
1797
+ pRaDY4sIHhU_17
1798
+ 93eAayq6GO0_240
1799
+ WQzEsz-lfIc_10
1800
+ oOLW1t9vpVQ_520
1801
+ RbFEpkuFCjI_421
1802
+ JUN314mwb90_100
1803
+ eqn9IX4aKmc_351
1804
+ -3GumCmyAIk_254
1805
+ glZ5cH82ycE_100
1806
+ 6DHUZ1Jt4wo_640
1807
+ fhuwLnHsH5U_673
1808
+ RbDBfWg_6QU_165
1809
+ grWuEPQKFAs_80
1810
+ 6DHUZ1Jt4wo_590
1811
+ OLBCzxzvBZM_86
1812
+ lRiyTbH0D24_200
1813
+ nDu57CGqbLM_38
1814
+ 93eAayq6GO0_480
1815
+ GGTOvP9OaXI_50
1816
+ QO-pWw4_z8Y_310
1817
+ tt02LzCbIcU_90
1818
+ zK3mQlK9ZVo_100
1819
+ Y7YBDESILgY_1403
1820
+ xiPfXsNhgIc_170
1821
+ bul6AM9JaDQ_196
1822
+ fhuwLnHsH5U_75
1823
+ pC2WmY6bkB4_737
1824
+ AaculwvmaTA_1665
1825
+ 7ZVYcIsEeHo_50
1826
+ JUN314mwb90_314
1827
+ aieThfuvmtY_1090
1828
+ 93eAayq6GO0_330
1829
+ MHjYjOXxx-E_180
1830
+ RbFEpkuFCjI_79
1831
+ AaculwvmaTA_270
1832
+ JEbPgn3clPk_38
1833
+ pxf-4iLOUVA_658
1834
+ 6DHUZ1Jt4wo_1470
1835
+ hSbaRwmJ5AA_2949
1836
+ bA_7toCijrk_29
1837
+ qvtEdv1WlUw_280
1838
+ bul6AM9JaDQ_227
1839
+ OLBCzxzvBZM_27
1840
+ qWpImMW4DHI_887
1841
+ u-Hpf2_wzB8_240
1842
+ grWuEPQKFAs_50
1843
+ UG3nqEzgq00_150
1844
+ KVvDejzzQjM_55
1845
+ eE5oue9yeFQ_93
1846
+ XiPamwUKnEo_174
1847
+ kSyessjQYeA_905
1848
+ 6DHUZ1Jt4wo_1310
1849
+ o5ILhtm2-Aw_122
1850
+ bfHVJJKqZUg_452
1851
+ _74aGilhTGU_3222
1852
+ Y7YBDESILgY_516
1853
+ samc7Y4r3fg_1328
1854
+ -3GumCmyAIk_57
1855
+ AaculwvmaTA_1696
1856
+ hSbaRwmJ5AA_1611
1857
+ RH5K2P6pH9Y_190
1858
+ _74aGilhTGU_967
1859
+ Pz4HjQhZDmk_172
1860
+ WU6WFEyfeH4_20
1861
+ bfHVJJKqZUg_631
1862
+ 5WrI-nS59kA_610
1863
+ pC2WmY6bkB4_32
1864
+ WU6WFEyfeH4_450
1865
+ fciO6_q2wk4_20
1866
+ LQrZLRdjqww_240
1867
+ LQrZLRdjqww_120
1868
+ 9X2wM6HD_og_943
1869
+ _74aGilhTGU_845
1870
+ fQukntBmFvY_100
1871
+ exjMJHYEssE_82
1872
+ UG3nqEzgq00_600
1873
+ OWN_J9FGZ5I_88
1874
+ 1whJPpizoDA_296
1875
+ GmtUEtUCX8o_873
1876
+ p5Ady9RJyhU_120
1877
+ RpNrYMA2y6c_230
1878
+ bul6AM9JaDQ_35
1879
+ OWN_J9FGZ5I_182
1880
+ KvSsYaoSJGI_20
1881
+ M8AHmUYaYbI_50
1882
+ VvXNTF68hdE_160
1883
+ 3GSTGzYkHks_70
1884
+ RpNrYMA2y6c_270
1885
+ 93eAayq6GO0_500
1886
+ WQzEsz-lfIc_390
1887
+ RH5K2P6pH9Y_310
1888
+ bul6AM9JaDQ_352
1889
+ UG3nqEzgq00_430
1890
+ Eeg_WJTTRX0_210
1891
+ glZ5cH82ycE_550
1892
+ 6DHUZ1Jt4wo_980
1893
+ HiaNsIscHPY_240
1894
+ lRiyTbH0D24_320
1895
+ 6DHUZ1Jt4wo_130
1896
+ QO-pWw4_z8Y_750
1897
+ Pz4HjQhZDmk_192
1898
+ QO-pWw4_z8Y_150
1899
+ hSbaRwmJ5AA_116
1900
+ tOJ6CGr-iho_210
1901
+ u-Hpf2_wzB8_310
1902
+ PVQiHhIVa48_134
1903
+ SCiA9KmQIEw_90
1904
+ q2DXQeG55N0_190
1905
+ VvXNTF68hdE_600
1906
+ KVvDejzzQjM_230
1907
+ 7ZVYcIsEeHo_360
1908
+ H6rMi6s5lRQ_160
1909
+ lRiyTbH0D24_30
1910
+ WQzEsz-lfIc_190
1911
+ oOLW1t9vpVQ_240
1912
+ JUN314mwb90_342
1913
+ GmtUEtUCX8o_456
1914
+ 0FB9jMXMP8A_52
1915
+ So9RUFpdPFU_22
1916
+ _74aGilhTGU_2463
1917
+ eqn9IX4aKmc_555
1918
+ qvtEdv1WlUw_400
1919
+ VvXNTF68hdE_320
1920
+ ZBXiIs_4H6M_52
1921
+ Eeg_WJTTRX0_200
1922
+ Wc_gzO9i38k_335
1923
+ 93eAayq6GO0_490
1924
+ WQzEsz-lfIc_210
1925
+ WU6WFEyfeH4_150
1926
+ qvtEdv1WlUw_440
1927
+ 9X2wM6HD_og_313
1928
+ CBMUhxJC6TU_610
1929
+ Wc_gzO9i38k_108
1930
+ pC2WmY6bkB4_472
1931
+ qWpImMW4DHI_1504
1932
+ hSbaRwmJ5AA_1948
1933
+ aM9v-6LKKhE_690
1934
+ hSbaRwmJ5AA_1970
1935
+ Y7YBDESILgY_1093
1936
+ CBMUhxJC6TU_550
1937
+ xMVdww-5394_370
1938
+ yhFN_xVmNsI_380
1939
+ aieThfuvmtY_1022
1940
+ pC2WmY6bkB4_862
1941
+ _yNwzbv3PeI_184
1942
+ WQzEsz-lfIc_360
1943
+ hSbaRwmJ5AA_1714
1944
+ DcMh9zgZbSg_710
1945
+ UG3nqEzgq00_490
1946
+ Y7YBDESILgY_2721
1947
+ grWuEPQKFAs_90
1948
+ lRiyTbH0D24_70
1949
+ wmL6FiKKqvQ_23
1950
+ QO-pWw4_z8Y_10
1951
+ 5WrI-nS59kA_190
1952
+ AaculwvmaTA_855
1953
+ _74aGilhTGU_3133
1954
+ samc7Y4r3fg_2136
1955
+ _74aGilhTGU_3155
1956
+ bul6AM9JaDQ_502
1957
+ 3GSTGzYkHks_80
1958
+ Fq8kqMmSl-c_440
1959
+ fhuwLnHsH5U_698
1960
+ qWpImMW4DHI_1729
1961
+ RpNrYMA2y6c_120
1962
+ Wc_gzO9i38k_28
1963
+ WQzEsz-lfIc_680
1964
+ WQzEsz-lfIc_30
1965
+ YFGgXLvsEGc_941
1966
+ 93eAayq6GO0_340
1967
+ fP0NllADuo0_20
1968
+ RH5K2P6pH9Y_60
1969
+ Wc_gzO9i38k_184
1970
+ Eeg_WJTTRX0_190
1971
+ qWpImMW4DHI_568
1972
+ _74aGilhTGU_601
1973
+ aM9v-6LKKhE_680
1974
+ UG3nqEzgq00_580
1975
+ fQukntBmFvY_190
1976
+ QO-pWw4_z8Y_430
1977
+ RH5K2P6pH9Y_710
1978
+ 93eAayq6GO0_80
1979
+ bGnivk-jepU_203
1980
+ qWpImMW4DHI_156
1981
+ Fq8kqMmSl-c_50
1982
+ Eeg_WJTTRX0_170
1983
+ dQaNzwqCUAA_585
1984
+ lRiyTbH0D24_240
1985
+ qvtEdv1WlUw_480
1986
+ 6DHUZ1Jt4wo_730
1987
+ aM9v-6LKKhE_780
1988
+ dQaNzwqCUAA_891
1989
+ eqn9IX4aKmc_488
1990
+ rYKxKYUBcjo_347
1991
+ 0FB9jMXMP8A_152
1992
+ HiaNsIscHPY_160
1993
+ VQAGxC8mSzA_77
1994
+ JUN314mwb90_291
1995
+ rYKxKYUBcjo_20
1996
+ 1whJPpizoDA_37
1997
+ RH5K2P6pH9Y_600
1998
+ QO-pWw4_z8Y_210
1999
+ kMZSoni0etA_50
2000
+ _74aGilhTGU_1698
2001
+ aM9v-6LKKhE_670
2002
+ CBMUhxJC6TU_530
2003
+ 93eAayq6GO0_150
2004
+ RpNrYMA2y6c_430
2005
+ glZ5cH82ycE_120
2006
+ 93eAayq6GO0_450
2007
+ RH5K2P6pH9Y_880
2008
+ hSbaRwmJ5AA_1091
2009
+ qWpImMW4DHI_294
2010
+ 93eAayq6GO0_260
2011
+ MHjYjOXxx-E_290
2012
+ AaculwvmaTA_1165
2013
+ 93eAayq6GO0_570
2014
+ 9X2wM6HD_og_181
2015
+ u-Hpf2_wzB8_260
2016
+ RpNrYMA2y6c_670
2017
+ ZBesGWBVkeY_3
2018
+ CBMUhxJC6TU_20
2019
+ kSyessjQYeA_822
2020
+ CBMUhxJC6TU_350
2021
+ n91RZ57a3mI_260
2022
+ u-Hpf2_wzB8_180
2023
+ Y7YBDESILgY_1010
2024
+ GmtUEtUCX8o_1073
2025
+ zUGBl9WEJY8_557
2026
+ WN4g4INMbIw_200
2027
+ L2Tv5v__9m4_24
2028
+ n91RZ57a3mI_200
2029
+ Wc_gzO9i38k_361
2030
+ fhuwLnHsH5U_1137
2031
+ grWuEPQKFAs_110
2032
+ CBMUhxJC6TU_560
2033
+ 91jpE2P8SPM_144
2034
+ tmO6N6TBXoE_84
2035
+ WQzEsz-lfIc_560
2036
+ XiPamwUKnEo_149
2037
+ TETd0Q2wnbY_278
2038
+ fhuwLnHsH5U_755
2039
+ xiPfXsNhgIc_120
2040
+ 6DHUZ1Jt4wo_180
2041
+ 9X2wM6HD_og_1048
2042
+ vPOh8bauanA_25
2043
+ 5WQ87UIJHQU_118
2044
+ RH5K2P6pH9Y_270
2045
+ kSyessjQYeA_1342
2046
+ b6L0bCePL0c_50
2047
+ f2kvR5I8s3c_50
2048
+ WQzEsz-lfIc_470
2049
+ OWN_J9FGZ5I_289
2050
+ _74aGilhTGU_2542
2051
+ qvtEdv1WlUw_460
2052
+ v5f-G9Uu5dE_16
2053
+ CBMUhxJC6TU_260
2054
+ RH5K2P6pH9Y_130
2055
+ GmtUEtUCX8o_942
2056
+ yhFN_xVmNsI_350
2057
+ MHjYjOXxx-E_150
2058
+ CBMUhxJC6TU_540
2059
+ MHjYjOXxx-E_190
2060
+ yhFN_xVmNsI_370
2061
+ QqMf0qWsCYM_221
2062
+ RH5K2P6pH9Y_390
2063
+ PVQiHhIVa48_785
2064
+ bul6AM9JaDQ_165
2065
+ qWpImMW4DHI_74
2066
+ u-Hpf2_wzB8_280
2067
+ eE5oue9yeFQ_183
2068
+ xiPfXsNhgIc_20
2069
+ fl-rc2-fb4Y_114
2070
+ _74aGilhTGU_1681
2071
+ fhuwLnHsH5U_936
2072
+ QO-pWw4_z8Y_520
2073
+ zWkaEsCIg5Q_45
2074
+ HT-N_iI3jug_50
2075
+ AaculwvmaTA_1998
2076
+ oOLW1t9vpVQ_120
2077
+ glZ5cH82ycE_720
2078
+ uuzlaAPBXYs_216
2079
+ 3GSTGzYkHks_100
2080
+ UG3nqEzgq00_590
2081
+ fciO6_q2wk4_150
2082
+ zWkaEsCIg5Q_134
2083
+ AaculwvmaTA_1468
2084
+ Fq8kqMmSl-c_300
2085
+ yhFN_xVmNsI_590
2086
+ 5WrI-nS59kA_420
2087
+ u-Hpf2_wzB8_170
2088
+ HiaNsIscHPY_250
2089
+ kSyessjQYeA_1884
2090
+ xiPfXsNhgIc_270
2091
+ AaculwvmaTA_1948
2092
+ aieThfuvmtY_927
2093
+ Y7YBDESILgY_439
2094
+ RbFEpkuFCjI_257
2095
+ hSbaRwmJ5AA_2529
2096
+ yhFN_xVmNsI_470
2097
+ 6DHUZ1Jt4wo_550
2098
+ n91RZ57a3mI_700
2099
+ QO-pWw4_z8Y_80
2100
+ pxf-4iLOUVA_1769
2101
+ Fq8kqMmSl-c_390
2102
+ UWT1xTEeP_s_110
2103
+ WU6WFEyfeH4_580
2104
+ qWpImMW4DHI_215
2105
+ I_M0f1c59oc_100
2106
+ RH5K2P6pH9Y_10
2107
+ 6DHUZ1Jt4wo_1060
2108
+ Y7YBDESILgY_2921
2109
+ WU6WFEyfeH4_180
2110
+ 6DHUZ1Jt4wo_1250
2111
+ grWuEPQKFAs_250
2112
+ samc7Y4r3fg_2105
2113
+ PVQiHhIVa48_275
2114
+ CBMUhxJC6TU_300
2115
+ YFGgXLvsEGc_2204
2116
+ pxf-4iLOUVA_1091
2117
+ UG3nqEzgq00_310
2118
+ AaculwvmaTA_991
2119
+ RH5K2P6pH9Y_610
2120
+ pRaDY4sIHhU_78
2121
+ 6DHUZ1Jt4wo_820
2122
+ _74aGilhTGU_2990
2123
+ glZ5cH82ycE_160
2124
+ Eeg_WJTTRX0_420
2125
+ CBMUhxJC6TU_580
2126
+ RpNrYMA2y6c_310
2127
+ 6DHUZ1Jt4wo_680
2128
+ AaculwvmaTA_511
2129
+ b6L0bCePL0c_360
2130
+ 6DHUZ1Jt4wo_1210
2131
+ UG3nqEzgq00_360
2132
+ lRiyTbH0D24_180
2133
+ b6L0bCePL0c_10
2134
+ q2DXQeG55N0_250
2135
+ Hmlec3vVbq8_168
2136
+ QO-pWw4_z8Y_570
2137
+ Y8BLz-u0u7c_457
2138
+ 5WQ87UIJHQU_75
2139
+ UG3nqEzgq00_180
2140
+ pC2WmY6bkB4_727
2141
+ KVvDejzzQjM_190
2142
+ UG3nqEzgq00_340
2143
+ kMZSoni0etA_30
2144
+ lz4TkjaNVPY_112
2145
+ QO-pWw4_z8Y_540
2146
+ hSbaRwmJ5AA_2924
2147
+ GGTOvP9OaXI_120
2148
+ bfHVJJKqZUg_111
2149
+ pC2WmY6bkB4_364
2150
+ 6DHUZ1Jt4wo_800
2151
+ QO-pWw4_z8Y_30
2152
+ bul6AM9JaDQ_141
2153
+ 9X2wM6HD_og_453
2154
+ aM9v-6LKKhE_840
2155
+ Pz4HjQhZDmk_123
2156
+ yhFN_xVmNsI_200
2157
+ H6rMi6s5lRQ_80
2158
+ WQzEsz-lfIc_310
2159
+ Eeg_WJTTRX0_310
2160
+ Wc_gzO9i38k_77
2161
+ 93eAayq6GO0_430
2162
+ aM9v-6LKKhE_580
2163
+ RH5K2P6pH9Y_870
2164
+ WQzEsz-lfIc_110
2165
+ oOLW1t9vpVQ_60
2166
+ qWpImMW4DHI_1959
2167
+ WQzEsz-lfIc_440
2168
+ fQukntBmFvY_30
2169
+ GmtUEtUCX8o_779
2170
+ XiPamwUKnEo_73
2171
+ fhuwLnHsH5U_101
2172
+ V8UBNttMWJo_17
2173
+ UG3nqEzgq00_720
2174
+ M8AHmUYaYbI_100
2175
+ UG3nqEzgq00_690
2176
+ glZ5cH82ycE_290
2177
+ eqn9IX4aKmc_603
2178
+ AaculwvmaTA_562
2179
+ Fq8kqMmSl-c_350
2180
+ qWpImMW4DHI_996
2181
+ Eeg_WJTTRX0_400
2182
+ aM9v-6LKKhE_540
2183
+ AaculwvmaTA_257
2184
+ GmtUEtUCX8o_167
2185
+ aieThfuvmtY_603
2186
+ fhuwLnHsH5U_881
2187
+ glZ5cH82ycE_560
2188
+ hSbaRwmJ5AA_1515
2189
+ UG3nqEzgq00_630
2190
+ 6DHUZ1Jt4wo_220
2191
+ Y7YBDESILgY_1039
2192
+ _74aGilhTGU_3455
2193
+ YFGgXLvsEGc_507
2194
+ q2DXQeG55N0_330
2195
+ aieThfuvmtY_1392
2196
+ yhFN_xVmNsI_440
2197
+ UG3nqEzgq00_10
2198
+ G-XZhKqQAHU_168
2199
+ DcMh9zgZbSg_400
2200
+ 6DHUZ1Jt4wo_670
2201
+ xiPfXsNhgIc_230
2202
+ pC2WmY6bkB4_708
2203
+ QO-pWw4_z8Y_490
2204
+ _yNwzbv3PeI_77
2205
+ RbFEpkuFCjI_339
2206
+ AaculwvmaTA_590
2207
+ q2DXQeG55N0_60
2208
+ yhFN_xVmNsI_610
2209
+ GmtUEtUCX8o_444
2210
+ gyFx147_35Q_229
2211
+ RH5K2P6pH9Y_590
2212
+ 5WrI-nS59kA_440
2213
+ q2DXQeG55N0_290
2214
+ 7ZVYcIsEeHo_250
2215
+ WQzEsz-lfIc_720
2216
+ Y7YBDESILgY_1052
2217
+ YFGgXLvsEGc_443
2218
+ RpNrYMA2y6c_710
2219
+ aM9v-6LKKhE_10
2220
+ qvtEdv1WlUw_300
2221
+ qWpImMW4DHI_1833
2222
+ Hmlec3vVbq8_415
2223
+ aCCPRvNpcYk_105
2224
+ oOLW1t9vpVQ_340
2225
+ zWkaEsCIg5Q_329
2226
+ Y8BLz-u0u7c_301
2227
+ yhFN_xVmNsI_570
2228
+ UG3nqEzgq00_570
2229
+ 530swnPWJrQ_117
2230
+ KVvDejzzQjM_178
2231
+ fciO6_q2wk4_250
2232
+ PVQiHhIVa48_559
2233
+ fQukntBmFvY_220
2234
+ Eeg_WJTTRX0_250
2235
+ rBKCBiIU72w_90
2236
+ ZBXiIs_4H6M_11
2237
+ HiaNsIscHPY_140
2238
+ CBMUhxJC6TU_80
2239
+ _74aGilhTGU_2232
2240
+ oOLW1t9vpVQ_180
2241
+ Eeg_WJTTRX0_320
2242
+ GmtUEtUCX8o_336
2243
+ rYKxKYUBcjo_10
2244
+ QO-pWw4_z8Y_550
2245
+ 2XhYnQ5QC4E_157
2246
+ _74aGilhTGU_2477
2247
+ fhuwLnHsH5U_119
2248
+ pxf-4iLOUVA_941
2249
+ fhuwLnHsH5U_134
2250
+ gyFx147_35Q_1
2251
+ 6DHUZ1Jt4wo_1200
2252
+ GmtUEtUCX8o_1136
2253
+ n91RZ57a3mI_460
2254
+ AaculwvmaTA_692
2255
+ GmtUEtUCX8o_472
2256
+ aM9v-6LKKhE_810
2257
+ rYKxKYUBcjo_40
2258
+ fQukntBmFvY_160
2259
+ _74aGilhTGU_438
2260
+ lOJBGAd0mSw_160
2261
+ qWpImMW4DHI_1358
2262
+ WQzEsz-lfIc_590
2263
+ aM9v-6LKKhE_710
2264
+ WU6WFEyfeH4_700
2265
+ kSyessjQYeA_223
2266
+ GmtUEtUCX8o_889
2267
+ samc7Y4r3fg_305
2268
+ WQzEsz-lfIc_450
2269
+ PVQiHhIVa48_403
2270
+ qvtEdv1WlUw_330
2271
+ u-Hpf2_wzB8_350
2272
+ WU6WFEyfeH4_380
2273
+ AaculwvmaTA_2029
2274
+ _74aGilhTGU_1996
2275
+ Eeg_WJTTRX0_390
2276
+ grWuEPQKFAs_120
2277
+ tOJ6CGr-iho_160
2278
+ hSbaRwmJ5AA_1540
2279
+ Fq8kqMmSl-c_420
2280
+ 5WrI-nS59kA_720
2281
+ 6DHUZ1Jt4wo_1050
2282
+ UG3nqEzgq00_290
2283
+ QO-pWw4_z8Y_560
2284
+ aCCPRvNpcYk_55
2285
+ QO-pWw4_z8Y_180
2286
+ AaculwvmaTA_577
2287
+ fhuwLnHsH5U_428
2288
+ fciO6_q2wk4_200
2289
+ _74aGilhTGU_1404
2290
+ KvSsYaoSJGI_99
2291
+ bA_7toCijrk_7
2292
+ UG3nqEzgq00_60
2293
+ dQaNzwqCUAA_1011
2294
+ WQzEsz-lfIc_300
2295
+ H6rMi6s5lRQ_100
2296
+ qWpImMW4DHI_263
2297
+ RH5K2P6pH9Y_540
2298
+ WU6WFEyfeH4_400
2299
+ RbFEpkuFCjI_58
2300
+ Y7YBDESILgY_171
2301
+ _74aGilhTGU_2418
2302
+ WU6WFEyfeH4_620
2303
+ bul6AM9JaDQ_282
2304
+ V5IVN81wYrI_30
2305
+ kSyessjQYeA_1518
2306
+ Fq8kqMmSl-c_150
2307
+ RH5K2P6pH9Y_690
2308
+ aM9v-6LKKhE_360
2309
+ _yNwzbv3PeI_170
2310
+ 93eAayq6GO0_400
2311
+ RH5K2P6pH9Y_330
2312
+ hSbaRwmJ5AA_2119
2313
+ AaculwvmaTA_963
2314
+ WQzEsz-lfIc_710
2315
+ Y7YBDESILgY_1334
2316
+ hSbaRwmJ5AA_1728
2317
+ pC2WmY6bkB4_274
2318
+ u-Hpf2_wzB8_300
2319
+ fhuwLnHsH5U_556
2320
+ Eeg_WJTTRX0_360
2321
+ oOLW1t9vpVQ_430
2322
+ vPOh8bauanA_282
2323
+ qWpImMW4DHI_981
2324
+ oOLW1t9vpVQ_330
2325
+ WQzEsz-lfIc_150
2326
+ dQaNzwqCUAA_977
2327
+ RH5K2P6pH9Y_360
2328
+ CBMUhxJC6TU_370
2329
+ qvtEdv1WlUw_580
2330
+ LQrZLRdjqww_370
2331
+ oOLW1t9vpVQ_220
2332
+ WQzEsz-lfIc_80
2333
+ HiaNsIscHPY_190
2334
+ YXMbB_oVcgw_44
2335
+ zUGBl9WEJY8_873
2336
+ 6DHUZ1Jt4wo_30
2337
+ qvtEdv1WlUw_240
2338
+ Wc_gzO9i38k_52
2339
+ 93eAayq6GO0_510
2340
+ OWN_J9FGZ5I_361
2341
+ _74aGilhTGU_3352
2342
+ QO-pWw4_z8Y_110
2343
+ 93eAayq6GO0_410
2344
+ WU6WFEyfeH4_570
2345
+ u-Hpf2_wzB8_150
2346
+ u-Hpf2_wzB8_140
2347
+ DcMh9zgZbSg_420
2348
+ lRiyTbH0D24_280
2349
+ CBMUhxJC6TU_360
2350
+ QO-pWw4_z8Y_630
2351
+ CBMUhxJC6TU_180
2352
+ kSyessjQYeA_879
2353
+ samc7Y4r3fg_252
2354
+ 6DHUZ1Jt4wo_580
2355
+ kMZSoni0etA_40
2356
+ AaculwvmaTA_548
2357
+ b6L0bCePL0c_280
2358
+ 6DHUZ1Jt4wo_350
2359
+ DcMh9zgZbSg_430
2360
+ Y7YBDESILgY_276
2361
+ VvXNTF68hdE_670
2362
+ YFGgXLvsEGc_475
2363
+ 3GSTGzYkHks_50
2364
+ fciO6_q2wk4_70
2365
+ aM9v-6LKKhE_800
2366
+ xiPfXsNhgIc_80
2367
+ _74aGilhTGU_1850
2368
+ aM9v-6LKKhE_120
2369
+ YFGgXLvsEGc_533
2370
+ aieThfuvmtY_550
2371
+ UG3nqEzgq00_210
2372
+ qvtEdv1WlUw_600
2373
+ qWpImMW4DHI_1584
2374
+ fhuwLnHsH5U_1237
2375
+ yhFN_xVmNsI_90
2376
+ 7ZVYcIsEeHo_160
2377
+ VvXNTF68hdE_630
2378
+ KVvDejzzQjM_72
2379
+ YFGgXLvsEGc_464
2380
+ Fq8kqMmSl-c_90
2381
+ SCiA9KmQIEw_160
2382
+ AaculwvmaTA_1631
2383
+ aM9v-6LKKhE_790
2384
+ bul6AM9JaDQ_915
2385
+ 6DHUZ1Jt4wo_1150
2386
+ pC2WmY6bkB4_180
2387
+ WQzEsz-lfIc_240
2388
+ S_hpD7teoow_28
2389
+ AaculwvmaTA_1730
2390
+ LQrZLRdjqww_140
2391
+ RH5K2P6pH9Y_90
2392
+ SCiA9KmQIEw_130
2393
+ Y7YBDESILgY_1153
2394
+ zUGBl9WEJY8_1127
2395
+ CBMUhxJC6TU_330
2396
+ VvXNTF68hdE_470
2397
+ eqn9IX4aKmc_472
2398
+ v5f-G9Uu5dE_31
2399
+ VQAGxC8mSzA_188
2400
+ samc7Y4r3fg_272
2401
+ hSbaRwmJ5AA_1842
2402
+ 6DHUZ1Jt4wo_790
2403
+ HiaNsIscHPY_450
2404
+ qvtEdv1WlUw_350
2405
+ VQAGxC8mSzA_177
2406
+ u-Hpf2_wzB8_340
2407
+ kSyessjQYeA_1704
2408
+ RpNrYMA2y6c_440
2409
+ kSyessjQYeA_1255
2410
+ Eeg_WJTTRX0_120
2411
+ PVQiHhIVa48_388
2412
+ lOJBGAd0mSw_610
2413
+ 7ZVYcIsEeHo_260
2414
+ SCiA9KmQIEw_60
2415
+ yhFN_xVmNsI_300
2416
+ zK3mQlK9ZVo_90
2417
+ OWN_J9FGZ5I_162
2418
+ fhuwLnHsH5U_1196
2419
+ hSbaRwmJ5AA_1451
2420
+ WU6WFEyfeH4_40
2421
+ 93eAayq6GO0_520
2422
+ RH5K2P6pH9Y_260
2423
+ UG3nqEzgq00_50
2424
+ _74aGilhTGU_56
2425
+ lOJBGAd0mSw_370
2426
+ CBMUhxJC6TU_280
2427
+ 6DHUZ1Jt4wo_1010
2428
+ RH5K2P6pH9Y_810
2429
+ kMZSoni0etA_110
2430
+ 93eAayq6GO0_110
2431
+ RH5K2P6pH9Y_770
2432
+ YXMbB_oVcgw_275
2433
+ Eeg_WJTTRX0_230
2434
+ 6DHUZ1Jt4wo_1030
2435
+ Pz4HjQhZDmk_87
2436
+ UG3nqEzgq00_670
2437
+ 6DHUZ1Jt4wo_1420
2438
+ pxf-4iLOUVA_1754
2439
+ p5Ady9RJyhU_80
2440
+ qWpImMW4DHI_1807
2441
+ pC2WmY6bkB4_786
2442
+ RH5K2P6pH9Y_350
2443
+ pC2WmY6bkB4_521
2444
+ GmtUEtUCX8o_116
2445
+ CBMUhxJC6TU_120
2446
+ hSbaRwmJ5AA_2460
2447
+ CBMUhxJC6TU_210
2448
+ KVvDejzzQjM_97
2449
+ JxMFgRCZuo0_150
2450
+ TETd0Q2wnbY_147
2451
+ lOJBGAd0mSw_420
2452
+ b6L0bCePL0c_110
2453
+ 6DHUZ1Jt4wo_530
2454
+ Eeg_WJTTRX0_380
2455
+ RpNrYMA2y6c_100
2456
+ bul6AM9JaDQ_185
2457
+ AaculwvmaTA_1789
2458
+ 6DHUZ1Jt4wo_850
2459
+ WQzEsz-lfIc_50
2460
+ Eeg_WJTTRX0_130
2461
+ UG3nqEzgq00_500
2462
+ hSbaRwmJ5AA_3411
2463
+ GmtUEtUCX8o_913
2464
+ xMVdww-5394_70
2465
+ WU6WFEyfeH4_420
2466
+ WQzEsz-lfIc_690
2467
+ QO-pWw4_z8Y_760
2468
+ aIQnFp5sSc8_64
2469
+ UWT1xTEeP_s_219
2470
+ RpNrYMA2y6c_770
2471
+ MHjYjOXxx-E_220
2472
+ AaculwvmaTA_1451
2473
+ DGtWuPemYc4_89
2474
+ Y7YBDESILgY_1321
2475
+ f2kvR5I8s3c_60
2476
+ QO-pWw4_z8Y_780
2477
+ q2DXQeG55N0_280
2478
+ yhFN_xVmNsI_630
2479
+ 6DHUZ1Jt4wo_1230
2480
+ QO-pWw4_z8Y_620
2481
+ glZ5cH82ycE_140
2482
+ u-Hpf2_wzB8_290
2483
+ kSyessjQYeA_1751
2484
+ aM9v-6LKKhE_510
2485
+ _74aGilhTGU_3038
2486
+ 6DHUZ1Jt4wo_1430
2487
+ 6DHUZ1Jt4wo_170
2488
+ VQAGxC8mSzA_146
2489
+ 7ZVYcIsEeHo_120
2490
+ 6DHUZ1Jt4wo_460
2491
+ ZBXiIs_4H6M_78
2492
+ P72n97ONayA_60
2493
+ KrEHdKxlNDQ_13
2494
+ Eeg_WJTTRX0_330
2495
+ Eeg_WJTTRX0_220
2496
+ HiaNsIscHPY_170
2497
+ Y8BLz-u0u7c_76
2498
+ OWN_J9FGZ5I_8
2499
+ QO-pWw4_z8Y_240
2500
+ UG3nqEzgq00_130
2501
+ DGtWuPemYc4_948
2502
+ VQAGxC8mSzA_131
2503
+ AaculwvmaTA_1713
2504
+ 0FB9jMXMP8A_93
2505
+ CBMUhxJC6TU_320
2506
+ yhFN_xVmNsI_230
2507
+ 5WrI-nS59kA_250
2508
+ WU6WFEyfeH4_250
2509
+ 1whJPpizoDA_86
2510
+ XiPamwUKnEo_198
2511
+ aM9v-6LKKhE_30
2512
+ fciO6_q2wk4_90
2513
+ 93eAayq6GO0_280
2514
+ TETd0Q2wnbY_120
2515
+ 0FB9jMXMP8A_112
2516
+ CBMUhxJC6TU_10
2517
+ yhFN_xVmNsI_460
2518
+ aIQnFp5sSc8_256
2519
+ iAk8ZXOL57Q_60
2520
+ Eeg_WJTTRX0_100
2521
+ 6DHUZ1Jt4wo_60
2522
+ Fq8kqMmSl-c_100
2523
+ GmtUEtUCX8o_1106
2524
+ 6DHUZ1Jt4wo_1260
2525
+ GGTOvP9OaXI_100
2526
+ P72n97ONayA_50
2527
+ MHjYjOXxx-E_260
2528
+ dQaNzwqCUAA_681
2529
+ grWuEPQKFAs_230
2530
+ 93eAayq6GO0_530
2531
+ 5WrI-nS59kA_530
2532
+ fciO6_q2wk4_100
2533
+ QO-pWw4_z8Y_90
2534
+ WU6WFEyfeH4_80
2535
+ Y7YBDESILgY_1073
2536
+ 6DHUZ1Jt4wo_760
2537
+ Y7YBDESILgY_1379
2538
+ _74aGilhTGU_2585
2539
+ AyVtAJzOJlE_2390
2540
+ Y8BLz-u0u7c_291
2541
+ yhFN_xVmNsI_620
2542
+ HiaNsIscHPY_120
2543
+ pC2WmY6bkB4_438
2544
+ ZBesGWBVkeY_16
2545
+ qvtEdv1WlUw_340
2546
+ samc7Y4r3fg_2210
2547
+ 6DHUZ1Jt4wo_80
2548
+ MHjYjOXxx-E_210
2549
+ QO-pWw4_z8Y_420
2550
+ Y7YBDESILgY_249
2551
+ RpNrYMA2y6c_130
2552
+ fciO6_q2wk4_130
2553
+ pC2WmY6bkB4_342
2554
+ _74aGilhTGU_2759
2555
+ 7ZVYcIsEeHo_320
2556
+ WQzEsz-lfIc_250
2557
+ fQukntBmFvY_170
2558
+ kSyessjQYeA_57
2559
+ lRiyTbH0D24_80
2560
+ aieThfuvmtY_284
2561
+ pC2WmY6bkB4_215
2562
+ qvtEdv1WlUw_390
2563
+ qvtEdv1WlUw_510
2564
+ u-Hpf2_wzB8_370
2565
+ 1WFJLucjK50_540
2566
+ RH5K2P6pH9Y_230
2567
+ kSyessjQYeA_2073
2568
+ qWpImMW4DHI_2231
2569
+ 5WQ87UIJHQU_31
2570
+ hSbaRwmJ5AA_3296
2571
+ YFGgXLvsEGc_373
2572
+ qvtEdv1WlUw_540
2573
+ WQzEsz-lfIc_140
2574
+ kSyessjQYeA_1646
2575
+ fhuwLnHsH5U_1274
2576
+ _74aGilhTGU_251
2577
+ yhFN_xVmNsI_600
2578
+ TKPZf_P5_18_70
2579
+ qvtEdv1WlUw_270
2580
+ 7ZVYcIsEeHo_20
2581
+ pC2WmY6bkB4_154
2582
+ YXMbB_oVcgw_135
2583
+ 6JTKEOAWLyQ_8
2584
+ CBMUhxJC6TU_570
2585
+ QO-pWw4_z8Y_390
2586
+ grWuEPQKFAs_200
2587
+ qvtEdv1WlUw_420
2588
+ WU6WFEyfeH4_670
2589
+ fP0NllADuo0_30
2590
+ tt02LzCbIcU_50
2591
+ Y7YBDESILgY_961
2592
+ I_M0f1c59oc_76
2593
+ 6DHUZ1Jt4wo_770
2594
+ 5WrI-nS59kA_560
2595
+ _74aGilhTGU_3398
2596
+ aieThfuvmtY_26
2597
+ o5ILhtm2-Aw_166
2598
+ RH5K2P6pH9Y_80
2599
+ S_hpD7teoow_66
2600
+ Y8BLz-u0u7c_107
2601
+ Eeg_WJTTRX0_440
2602
+ q2DXQeG55N0_310
2603
+ RH5K2P6pH9Y_440
2604
+ _74aGilhTGU_3423
2605
+ bul6AM9JaDQ_153
2606
+ RH5K2P6pH9Y_50
2607
+ RbDBfWg_6QU_10
2608
+ 1whJPpizoDA_54
2609
+ qvtEdv1WlUw_80
2610
+ zja_kP413FM_66
2611
+ KVvDejzzQjM_110
2612
+ _74aGilhTGU_2663
2613
+ lRiyTbH0D24_90
2614
+ oOLW1t9vpVQ_420
2615
+ QO-pWw4_z8Y_100
2616
+ Y7YBDESILgY_356
2617
+ o5ILhtm2-Aw_458
2618
+ WU6WFEyfeH4_280
2619
+ QO-pWw4_z8Y_20
2620
+ aIQnFp5sSc8_27
2621
+ UG3nqEzgq00_30
2622
+ Hmlec3vVbq8_231
2623
+ hSbaRwmJ5AA_2057
2624
+ oOLW1t9vpVQ_370
2625
+ 7ZVYcIsEeHo_270
2626
+ M8AHmUYaYbI_30
2627
+ kollE03EaUw_14
2628
+ pC2WmY6bkB4_820
2629
+ UG3nqEzgq00_280
2630
+ AaculwvmaTA_1885
2631
+ Y7YBDESILgY_382
2632
+ xiPfXsNhgIc_190
2633
+ hSbaRwmJ5AA_2518
2634
+ 93eAayq6GO0_350
2635
+ oOLW1t9vpVQ_510
2636
+ _74aGilhTGU_2913
2637
+ qvtEdv1WlUw_10
2638
+ SCiA9KmQIEw_70
2639
+ n91RZ57a3mI_470
2640
+ Fq8kqMmSl-c_470
2641
+ pK6zivAiToA_0
2642
+ xMVdww-5394_250
2643
+ qWpImMW4DHI_316
2644
+ pxf-4iLOUVA_1784
2645
+ bfHVJJKqZUg_573
2646
+ RH5K2P6pH9Y_240
2647
+ RpNrYMA2y6c_810
2648
+ VQAGxC8mSzA_162
2649
+ WQzEsz-lfIc_20
2650
+ RH5K2P6pH9Y_70
2651
+ oOLW1t9vpVQ_500
2652
+ V8UBNttMWJo_125
2653
+ 93eAayq6GO0_460
2654
+ oOLW1t9vpVQ_100
2655
+ hSbaRwmJ5AA_2804
2656
+ fQukntBmFvY_50
2657
+ AaculwvmaTA_945
2658
+ grWuEPQKFAs_270
2659
+ BZ0yzt_-gtM_24
2660
+ Hmlec3vVbq8_194
2661
+ lOJBGAd0mSw_240
2662
+ dQaNzwqCUAA_957
2663
+ HiaNsIscHPY_100
2664
+ bA_7toCijrk_42
2665
+ 6DHUZ1Jt4wo_700
2666
+ nDu57CGqbLM_17
2667
+ Eeg_WJTTRX0_300
2668
+ J2PYwi8fy-M_77
2669
+ QO-pWw4_z8Y_300
2670
+ pC2WmY6bkB4_397
2671
+ u-Hpf2_wzB8_110
2672
+ PVQiHhIVa48_491
2673
+ qWpImMW4DHI_939
2674
+ 1WFJLucjK50_828
2675
+ So9RUFpdPFU_10
2676
+ QO-pWw4_z8Y_290
2677
+ GmtUEtUCX8o_137
2678
+ glZ5cH82ycE_530
2679
+ oOLW1t9vpVQ_390
2680
+ KklDLhM2r1M_94
2681
+ GmtUEtUCX8o_584
2682
+ WQzEsz-lfIc_340
2683
+ hSbaRwmJ5AA_2580
2684
+ pC2WmY6bkB4_448
2685
+ _74aGilhTGU_2519
2686
+ oOLW1t9vpVQ_530
2687
+ MHjYjOXxx-E_230
2688
+ RbDBfWg_6QU_218
2689
+ qvtEdv1WlUw_150
2690
+ 1whJPpizoDA_264
2691
+ YFGgXLvsEGc_385
2692
+ p5Ady9RJyhU_110
2693
+ Fq8kqMmSl-c_210
2694
+ zK3mQlK9ZVo_50
2695
+ zWkaEsCIg5Q_124
2696
+ aM9v-6LKKhE_530
2697
+ fhuwLnHsH5U_173
2698
+ 6DHUZ1Jt4wo_120
2699
+ pxf-4iLOUVA_972
2700
+ fhuwLnHsH5U_46
2701
+ WQzEsz-lfIc_100
2702
+ kSyessjQYeA_1765
2703
+ 7ZVYcIsEeHo_90
2704
+ GmtUEtUCX8o_850
2705
+ yhFN_xVmNsI_360
2706
+ WQzEsz-lfIc_160
2707
+ 6DHUZ1Jt4wo_880
2708
+ 6DHUZ1Jt4wo_500
2709
+ 9X2wM6HD_og_626
2710
+ p5Ady9RJyhU_100
2711
+ CXeKld-Irmk_84
2712
+ DcMh9zgZbSg_330
2713
+ WQzEsz-lfIc_70
2714
+ WU6WFEyfeH4_60
2715
+ aM9v-6LKKhE_870
2716
+ b6L0bCePL0c_320
2717
+ lOJBGAd0mSw_590
2718
+ Y7YBDESILgY_413
2719
+ oOLW1t9vpVQ_310
2720
+ PVQiHhIVa48_797
2721
+ 530swnPWJrQ_185
2722
+ HiaNsIscHPY_360
2723
+ WU6WFEyfeH4_650
2724
+ kSyessjQYeA_1388
2725
+ H6rMi6s5lRQ_150
2726
+ VvXNTF68hdE_330
2727
+ GGTOvP9OaXI_60
2728
+ eE5oue9yeFQ_137
2729
+ pxf-4iLOUVA_2234
2730
+ ZBXiIs_4H6M_124
2731
+ kSyessjQYeA_2023
2732
+ qWpImMW4DHI_1240
2733
+ QO-pWw4_z8Y_660
2734
+ _74aGilhTGU_2769
2735
+ 6DHUZ1Jt4wo_270
2736
+ V5IVN81wYrI_100
2737
+ uuzlaAPBXYs_308
2738
+ OLBCzxzvBZM_114
2739
+ WQzEsz-lfIc_290
2740
+ 1whJPpizoDA_121
2741
+ oOLW1t9vpVQ_490
2742
+ qWpImMW4DHI_1768
2743
+ QO-pWw4_z8Y_740
2744
+ _74aGilhTGU_289
2745
+ Y7YBDESILgY_483
2746
+ QO-pWw4_z8Y_610
2747
+ qvtEdv1WlUw_190
2748
+ Wc_gzO9i38k_463
2749
+ 7ZVYcIsEeHo_70
2750
+ pC2WmY6bkB4_240
2751
+ JUN314mwb90_49
2752
+ zWkaEsCIg5Q_265
2753
+ hSbaRwmJ5AA_2861
2754
+ qvtEdv1WlUw_430
2755
+ RbDBfWg_6QU_63
2756
+ aieThfuvmtY_539
2757
+ qWpImMW4DHI_2034
2758
+ Pz4HjQhZDmk_41
2759
+ zja_kP413FM_126
2760
+ b6L0bCePL0c_310
2761
+ UG3nqEzgq00_80
2762
+ VvXNTF68hdE_510
2763
+ Y8BLz-u0u7c_495
2764
+ KklDLhM2r1M_137
2765
+ p5Ady9RJyhU_20
2766
+ Wc_gzO9i38k_484
2767
+ RH5K2P6pH9Y_220
2768
+ oOLW1t9vpVQ_400
2769
+ RbDBfWg_6QU_231
2770
+ HiaNsIscHPY_40
2771
+ fhuwLnHsH5U_189
2772
+ aM9v-6LKKhE_650
2773
+ AyVtAJzOJlE_1178
2774
+ GGTOvP9OaXI_40
2775
+ kMZSoni0etA_130
2776
+ Y7YBDESILgY_221
2777
+ 6DHUZ1Jt4wo_90
2778
+ Wc_gzO9i38k_450
2779
+ qvtEdv1WlUw_370
2780
+ AaculwvmaTA_434
2781
+ fQukntBmFvY_90
2782
+ rYKxKYUBcjo_30
2783
+ hSbaRwmJ5AA_2729
2784
+ eqn9IX4aKmc_250
2785
+ AaculwvmaTA_1777
2786
+ DcMh9zgZbSg_610
2787
+ RpNrYMA2y6c_520
2788
+ AaculwvmaTA_2039
2789
+ RpNrYMA2y6c_400
2790
+ qWpImMW4DHI_1138
2791
+ ZBXiIs_4H6M_90
2792
+ oOLW1t9vpVQ_290
2793
+ 5WrI-nS59kA_380
2794
+ f2kvR5I8s3c_10
2795
+ u-Hpf2_wzB8_50
2796
+ ZBesGWBVkeY_70
2797
+ JUN314mwb90_154
2798
+ PVQiHhIVa48_1030
2799
+ UG3nqEzgq00_70
2800
+ VQAGxC8mSzA_49
2801
+ pC2WmY6bkB4_562
2802
+ CBMUhxJC6TU_510
2803
+ aM9v-6LKKhE_590
2804
+ 6DHUZ1Jt4wo_1240
2805
+ 0FB9jMXMP8A_123
2806
+ DcMh9zgZbSg_440
2807
+ H6rMi6s5lRQ_10
2808
+ _74aGilhTGU_1466
2809
+ u-Hpf2_wzB8_200
2810
+ u-Hpf2_wzB8_440
2811
+ AaculwvmaTA_2018
2812
+ aIQnFp5sSc8_37
2813
+ WU6WFEyfeH4_410
2814
+ AaculwvmaTA_1751
2815
+ lRiyTbH0D24_230
2816
+ 0FB9jMXMP8A_19
2817
+ fhuwLnHsH5U_598
2818
+ qWpImMW4DHI_815
2819
+ qvtEdv1WlUw_550
2820
+ RpNrYMA2y6c_390
2821
+ WU6WFEyfeH4_530
2822
+ lRiyTbH0D24_220
2823
+ CBMUhxJC6TU_40
2824
+ n91RZ57a3mI_880
2825
+ zUGBl9WEJY8_626
2826
+ glZ5cH82ycE_230
2827
+ RH5K2P6pH9Y_470
2828
+ glZ5cH82ycE_610
2829
+ Fq8kqMmSl-c_310
2830
+ V5IVN81wYrI_80
2831
+ RbFEpkuFCjI_127
2832
+ pC2WmY6bkB4_166
2833
+ V5IVN81wYrI_20
2834
+ RH5K2P6pH9Y_760
2835
+ qWpImMW4DHI_1524
2836
+ AaculwvmaTA_1077
2837
+ Y7YBDESILgY_1117
2838
+ Wc_gzO9i38k_42
2839
+ AaculwvmaTA_600
2840
+ QO-pWw4_z8Y_170
2841
+ pdxDaxTpFoY_114
2842
+ _74aGilhTGU_2046
2843
+ q2DXQeG55N0_850
2844
+ DGtWuPemYc4_1159
2845
+ WQzEsz-lfIc_120
2846
+ 6DHUZ1Jt4wo_390
2847
+ WQzEsz-lfIc_670
2848
+ qvtEdv1WlUw_90
2849
+ QO-pWw4_z8Y_350
2850
+ UG3nqEzgq00_440
2851
+ GmtUEtUCX8o_179
2852
+ WU6WFEyfeH4_90
2853
+ PVQiHhIVa48_580
2854
+ pC2WmY6bkB4_831
2855
+ zWkaEsCIg5Q_415
2856
+ fhuwLnHsH5U_946
2857
+ XiPamwUKnEo_37
2858
+ lz4TkjaNVPY_37
2859
+ 6DHUZ1Jt4wo_1360
2860
+ 93eAayq6GO0_550
2861
+ fciO6_q2wk4_260
2862
+ aM9v-6LKKhE_660
2863
+ Eeg_WJTTRX0_80
2864
+ qWpImMW4DHI_837
2865
+ bul6AM9JaDQ_866
2866
+ kSyessjQYeA_1736
2867
+ UG3nqEzgq00_20
2868
+ LSeJeKHsUkw_10
2869
+ TKPZf_P5_18_60
2870
+ 1WFJLucjK50_555
2871
+ RpNrYMA2y6c_160
2872
+ gyFx147_35Q_73
2873
+ Y7YBDESILgY_402
2874
+ fhuwLnHsH5U_1109
2875
+ kSyessjQYeA_1613
2876
+ AyVtAJzOJlE_1222
2877
+ LQrZLRdjqww_490
2878
+ u-Hpf2_wzB8_100
2879
+ LSeJeKHsUkw_58
2880
+ G-XZhKqQAHU_56
2881
+ GmtUEtUCX8o_414
2882
+ HT-N_iI3jug_30
2883
+ _74aGilhTGU_3180
2884
+ GmtUEtUCX8o_529
2885
+ 6DHUZ1Jt4wo_290
2886
+ pC2WmY6bkB4_797
2887
+ glZ5cH82ycE_130
2888
+ _74aGilhTGU_1663
2889
+ JxMFgRCZuo0_210
2890
+ RH5K2P6pH9Y_680
2891
+ hSbaRwmJ5AA_2840
2892
+ JxMFgRCZuo0_100
2893
+ eqn9IX4aKmc_239
2894
+ lRiyTbH0D24_440
2895
+ qvtEdv1WlUw_200
2896
+ yhFN_xVmNsI_490
2897
+ So9RUFpdPFU_61
2898
+ 6DHUZ1Jt4wo_370
2899
+ MHjYjOXxx-E_140
2900
+ 1whJPpizoDA_76
2901
+ 1WFJLucjK50_568
2902
+ u-Hpf2_wzB8_20
2903
+ eqn9IX4aKmc_499
2904
+ lRiyTbH0D24_260
2905
+ f2kvR5I8s3c_110
2906
+ 5WrI-nS59kA_130
2907
+ WQzEsz-lfIc_380
2908
+ 93eAayq6GO0_470
2909
+ fhuwLnHsH5U_266
2910
+ lRiyTbH0D24_100
2911
+ Fq8kqMmSl-c_160
2912
+ 0FB9jMXMP8A_73
2913
+ RpNrYMA2y6c_600
2914
+ lRiyTbH0D24_190
2915
+ 6DHUZ1Jt4wo_1290
2916
+ samc7Y4r3fg_1863
2917
+ KVvDejzzQjM_205
2918
+ hm65SlpTXZo_140
2919
+ b6L0bCePL0c_330
2920
+ 6JTKEOAWLyQ_29
2921
+ YFGgXLvsEGc_667
2922
+ Y7YBDESILgY_154
2923
+ 6DHUZ1Jt4wo_490
2924
+ fciO6_q2wk4_180
2925
+ 6DHUZ1Jt4wo_870
2926
+ kMZSoni0etA_60
2927
+ kSyessjQYeA_2103
2928
+ zWkaEsCIg5Q_444
2929
+ PVQiHhIVa48_1364
2930
+ Y7YBDESILgY_1352
2931
+ AaculwvmaTA_1574
2932
+ lOJBGAd0mSw_260
2933
+ Fq8kqMmSl-c_500
2934
+ qvtEdv1WlUw_120
2935
+ 6DHUZ1Jt4wo_750
2936
+ AaculwvmaTA_1557
2937
+ qvtEdv1WlUw_520
2938
+ Y7YBDESILgY_2907
2939
+ samc7Y4r3fg_1209
2940
+ grWuEPQKFAs_100
2941
+ rYKxKYUBcjo_217
2942
+ OWN_J9FGZ5I_222
2943
+ HiaNsIscHPY_370
2944
+ 6DHUZ1Jt4wo_360
2945
+ tAiVUt5vE34l_10
2946
+ NdE7uYVaynQl_30
2947
+ cqb-1gHYJHgl_220
2948
+ tAiVUt5vE34l_70
2949
+ PuekW6d_0yEl_40
2950
+ 8iTTf1exkdMl_90
2951
+ cqb-1gHYJHgl_110
2952
+ tAiVUt5vE34l_50
2953
+ PuekW6d_0yEl_70
2954
+ cqb-1gHYJHgl_210
2955
+ 0B7ds6NmVBQl_30
2956
+ cqb-1gHYJHgl_180
2957
+ jrvzuQmr5tol_0
2958
+ PuekW6d_0yEl_60
2959
+ JHSg8eF-3NMl_20
2960
+ 0B7ds6NmVBQl_20
2961
+ JHSg8eF-3NMl_0
2962
+ 8iTTf1exkdMl_140
2963
+ PuekW6d_0yEl_20
2964
+ 0B7ds6NmVBQl_110
2965
+ 8iTTf1exkdMl_100
2966
+ 0B7ds6NmVBQl_100
2967
+ V_To4k9AJXcl_90
2968
+ 0B7ds6NmVBQl_50
2969
+ 8iTTf1exkdMl_30
2970
+ V_To4k9AJXcl_120
2971
+ G8pABGosD38l_17
2972
+ V_To4k9AJXcl_200
2973
+ 6u9WL3KfIZUl_40
2974
+ V_To4k9AJXcl_30
2975
+ V_To4k9AJXcl_70
2976
+ 6u9WL3KfIZUl_70
2977
+ cqb-1gHYJHgl_140
2978
+ 0B7ds6NmVBQl_60
2979
+ cqb-1gHYJHgl_70
2980
+ PuekW6d_0yEl_100
2981
+ cqb-1gHYJHgl_200
2982
+ 0B7ds6NmVBQl_90
2983
+ V_To4k9AJXcl_170
2984
+ cqb-1gHYJHgl_40
2985
+ 8iTTf1exkdMl_160
2986
+ cqb-1gHYJHgl_240
2987
+ V_To4k9AJXcl_60
2988
+ JHSg8eF-3NMl_10
2989
+ 0B7ds6NmVBQl_40
2990
+ PuekW6d_0yEl_50
2991
+ 8iTTf1exkdMl_110
2992
+ PuekW6d_0yEl_130
2993
+ V_To4k9AJXcl_40
2994
+ V_To4k9AJXcl_20
2995
+ cqb-1gHYJHgl_20
2996
+ JHSg8eF-3NMl_40
2997
+ V_To4k9AJXcl_110
2998
+ cqb-1gHYJHgl_190
2999
+ PuekW6d_0yEl_120
3000
+ tAiVUt5vE34l_30
3001
+ NdE7uYVaynQl_10
3002
+ 8iTTf1exkdMl_50
3003
+ 0B7ds6NmVBQl_80
3004
+ 8iTTf1exkdMl_70
3005
+ tAiVUt5vE34l_20
3006
+ 8iTTf1exkdMl_10
3007
+ 8iTTf1exkdMl_130
3008
+ NdE7uYVaynQl_20
3009
+ V_To4k9AJXcl_160
3010
+ cqb-1gHYJHgl_130
3011
+ 8iTTf1exkdMl_0
3012
+ tAiVUt5vE34l_40
3013
+ V_To4k9AJXcl_100
3014
+ tAiVUt5vE34l_80
3015
+ tAiVUt5vE34l_90
3016
+ V_To4k9AJXcl_80
3017
+ 8iTTf1exkdMl_120
3018
+ 0B7ds6NmVBQl_0
3019
+ cqb-1gHYJHgl_60
3020
+ cqb-1gHYJHgl_160
3021
+ tAiVUt5vE34l_60
3022
+ V_To4k9AJXcl_130
3023
+ cqb-1gHYJHgl_80
3024
+ 8iTTf1exkdMl_40
3025
+ PuekW6d_0yEl_90
3026
+ cqb-1gHYJHgl_270
3027
+ cqb-1gHYJHgl_90
3028
+ PuekW6d_0yEl_80
3029
+ cqb-1gHYJHgl_260
3030
+ gSueCRQO_5gl_0
3031
+ 0B7ds6NmVBQl_70
3032
+ cqb-1gHYJHgl_100
3033
+ cqb-1gHYJHgl_50
3034
+ V_To4k9AJXcl_180
3035
+ cqb-1gHYJHgl_120
3036
+ 6u9WL3KfIZUl_50
3037
+ 6u9WL3KfIZUl_60
3038
+ cqb-1gHYJHgl_250
3039
+ cqb-1gHYJHgl_30
3040
+ 0B7ds6NmVBQl_10
3041
+ tAiVUt5vE34l_100
3042
+ dS7Ffvs2Evgl_4
3043
+ tAiVUt5vE34l_0
3044
+ 6u9WL3KfIZUl_30
3045
+ JHSg8eF-3NMl_30
3046
+ NdE7uYVaynQl_0
3047
+ PuekW6d_0yEl_10
3048
+ 6u9WL3KfIZUl_10
3049
+ 8iTTf1exkdMl_80
3050
+ cqb-1gHYJHgl_170
3051
+ cqb-1gHYJHgl_230
3052
+ V_To4k9AJXcl_190
3053
+ 6u9WL3KfIZUl_20
3054
+ V_To4k9AJXcl_150
3055
+ 8iTTf1exkdMl_60
3056
+ V_To4k9AJXcl_50
3057
+ PuekW6d_0yEl_30
3058
+ PuekW6d_0yEl_110
3059
+ cqb-1gHYJHgl_150
3060
+ cqb-1gHYJHgl_10
3061
+ 8iTTf1exkdMl_20
3062
+ 8iTTf1exkdMl_150
3063
+ V_To4k9AJXcl_140
dataset/split/train.txt ADDED
The diff for this file is too large to render. See raw diff
 
docs/clean.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Data Cleaning
2
+
3
+ ![DataClean](img/clean.png)
4
+
5
+ - [Data Cleaning](#data-cleaning)
6
+ - [Silent Filtering](#silent-filtering)
7
+ - [Static Frame Filtering](#static-frame-filtering)
8
+ - [Audio-Visual Matching Filtering](#audio-visual-matching-filtering)
9
+ - [Voice Detection Filtering](#voice-detection-filtering)
10
+
11
+
12
+ ## Silent Filtering
13
+
14
+ **Path:** [toolset/clean/silent/check_new_silent.py](../toolset/crawl/core/download/download_list.py)
15
+
16
+ **Description:** Filters out audio clips where dBFS remains below -35 for over 90% of the duration. (Parameters are adjustable)
17
+
18
+ **Usage Instructions:**
19
+
20
+ 1. Modify the input_directory and output_txt_file parameters in [check_new_silent.py](../toolset/crawl/core/download/download_list.py).
21
+ 2. Run: `python check_new_silent.py`.
22
+
23
+ ## Static Frame Filtering
24
+
25
+ **Path:** [toolset/clean/static/check_static_ffmpeg.py](../toolset/crawl/core/download/download_list.py)
26
+
27
+ **Description:** Samples 2 frames per second. Consecutive frames are converted to grayscale and compared using MSE - frames with MSE <5 are considered static. Videos with over 85% static frames are filtered. (Parameters are adjustable)
28
+
29
+ **Usage Instructions:**
30
+
31
+ 1. Set the folder_path parameter in [check_static_ffmpeg.py](../toolset/crawl/core/download/download_list.py).
32
+ 2. Execute: `python check_static_ffmpeg.py`.
33
+
34
+ ## Audio-Visual Matching Filtering
35
+
36
+ **Path:** [toolset/clean/ImageBind/test.py](../toolset/clean/ImageBind/test.py)
37
+
38
+ **Description:** Uses [ImageBind](https://github.com/facebookresearch/ImageBind) to evaluate the match between video content and audio.
39
+
40
+ **Usage Instructions:**
41
+
42
+ 1. Clone the [ImageBind](https://github.com/facebookresearch/ImageBind) repository into `toolset/clean/ImageBind/` and configure python environment.
43
+ 2. (Optional) Configure CUDA settings in `test.py`.
44
+ 3. Run: `python test.py`.
45
+
46
+ ## Voice Detection Filtering
47
+
48
+ **Path:** [toolset/clean/SenseVoice/check_voice.py](../toolset/clean/SenseVoice/check_voice.py), [toolset/clean/SenseVoice/char_count.py](../toolset/clean/SenseVoice/char_count.py)
49
+
50
+ **Description:** Uses SenseVoice for voice detection and analysis.
51
+
52
+ **Usage Instructions:**
53
+
54
+ 1. Clone the [SenseVoice](https://github.com/FunAudioLLM/SenseVoice) repository into `toolset/clean/SenseVoice/` and configure python environment.
55
+ 2. Configure `audio_folder` in [check_voice.py](../toolset/clean/SenseVoice/check_voice.py).
56
+ 3. Run [check_voice.py](../toolset/clean/SenseVoice/check_voice.py) to output recognized speech text
57
+ 4. Execute [char_count.py]((../toolset/clean/SenseVoice/char_count.py)) for speech character analysis
docs/crawl.md ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Data Crawling
2
+
3
+
4
+ ![DataCrawl](img/crawl.png)
5
+
6
+
7
+ - [Data Crawling](#data-crawling)
8
+ - [Search](#search)
9
+ - [Channel-Based Crawling](#channel-based-crawling)
10
+ - [Analyze channels based on search results](#analyze-channels-based-on-search-results)
11
+ - [Get Video IDs for channels](#get-video-ids-for-channels)
12
+ - [Get test video metadata](#get-test-video-metadata)
13
+ - [Download test videos \& Check](#download-test-videos--check)
14
+ - [Get Video IDs based on Channel IDs](#get-video-ids-based-on-channel-ids)
15
+ - [Download](#download)
16
+ - [Video-Based Crawling](#video-based-crawling)
17
+ - [Filter by Blacklist](#filter-by-blacklist)
18
+ - [Download Test Videos \& Verification \& Full Download](#download-test-videos--verification--full-download)
19
+ - [Download](#download-1)
20
+ - [Full Video Download](#full-video-download)
21
+ - [Batch Download Function](#batch-download-function)
22
+
23
+
24
+ ## Search
25
+
26
+ **Path:** [toolset/crawl/search/search.sh](../toolset/crawl/search/search.sh)
27
+
28
+ **Description:** This script uses the YouTube API to search for 360-degree videos based on a predefined list of keywords and suffix terms. Note that the retrieved videos are confirmed as 360-degree videos but **do not guarantee support for Spatial Audio**. To filter videos that support Spatial Audio, use a downloader (e.g., `yt-dlp` with an audio channel count filter).
29
+
30
+ **Usage Instructions:**
31
+
32
+ 1. Prepare a keyword list file (one keyword per line).
33
+ 2. Modify the parameters in `search.sh`, such as `keyword_file`, `postfix`(i.e. the qualifying term), and `output_dir`. Refer to the code comments for detailed parameter descriptions.
34
+ 3. Run `bash search.sh` to execute the search. Results are saved in CSV format under the `output_dir` directory, organized by keyword.
35
+
36
+ ## Channel-Based Crawling
37
+
38
+ ### Analyze channels based on search results
39
+
40
+ **Path:** [toolset/crawl/channel/channel_analyzer.py](../toolset/crawl/channel/channel_analyzer.py)
41
+
42
+ **Description:** Analyzes frequently appearing channels based on search results from the `search` module. Outputs in CSV format.
43
+
44
+ **Usage Instructions:**
45
+
46
+ ```bash
47
+ python channel_analyzer.py -i [input-dir] -o [output-file]
48
+ ```
49
+
50
+ ### Get Video IDs for channels
51
+
52
+ **Path:** [toolset/crawl/channel/get_channel_vids.py](../toolset/crawl/channel/get_channel_vids.py)
53
+
54
+ **Description:** Retrieves all 360-degree video IDs from the most promising channels (those containing the most search results). The output directory contains CSV files named by Channel ID, each containing all 360-degree video IDs for the corresponding channel.
55
+
56
+ **Usage Instructions:**
57
+
58
+ ```bash
59
+ python get_channel_vids.py -i [input-csv] -o [out-dir] -t [threshold]
60
+ ```
61
+
62
+ Where `threshold` specifies the minimum number of times a channel must appear in search results to be retained.
63
+
64
+ ### Get test video metadata
65
+
66
+ **Path:** [toolset/crawl/channel/get_test_list.py](../toolset/crawl/channel/get_test_list.py)
67
+
68
+ **Description:** For each channel, randomly samples several video segments from the Channel ID's video ID information, and outputs in CSV format recognizable by download scripts.
69
+
70
+ **Usage Instructions:**
71
+
72
+ ```bash
73
+ python get_test_list.py -i [in-dir] -o [out-dir] [-n [sample-size]]
74
+ ```
75
+
76
+ Here `in-dir` contains the CSV files named by Channel ID obtained from the previous module, and `out-dir` will contain CSV files named by each Channel ID, with each file containing up to 10 Video IDs for the corresponding channel.
77
+
78
+ ### Download test videos & Check
79
+
80
+ Use your preferred downloader or scripts from the `Download` section to download test segments, then perform manual verification or use the cleaning pipeline from the `Data Cleaning` section to verify channel quality, filtering out usable and unusable Channel IDs (both can be included in the Channel Black List).
81
+
82
+ ### Get Video IDs based on Channel IDs
83
+
84
+ **Path:** [toolset/crawl/channel/get_channels_vids.py](../toolset/crawl/channel/get_channels_vids.py)
85
+
86
+ **Description:** Retrieves video IDs to be downloaded based on a list of available Channel IDs. All resulting Video IDs are guaranteed to be 360-degree videos. Due to API limitations, Spatial Audio support is verified during the download phase rather than this stage.
87
+
88
+ **Usage Instructions:**
89
+
90
+ ```bash
91
+ python get_channels_vids.py -i [input-csv] -o [output-csv]
92
+ ```
93
+
94
+ ### Download
95
+
96
+ Use your preferred downloader or scripts from the `Download` section for video downloading.
97
+
98
+ ## Video-Based Crawling
99
+
100
+ ### Filter by Blacklist
101
+
102
+ **Path:** [toolset/crawl/filter/filter_exist.py](../toolset/crawl/filter/filter_exist.py)
103
+
104
+ **Description:**
105
+
106
+ Utilizes the established video and channel blacklists from Channel-Based Crawling to filter out confirmed unnecessary video entries from search results, generating a smaller-scale list for manual review.
107
+
108
+ **Usage Instructions:**
109
+
110
+ 1. Prepare the Video ID blacklist database and Channel ID blacklist database (including all manually verified usable/unusable video or channel IDs). Modify `video_db_path` and `channel_db_path` in the script.
111
+ 2. Update the search results path `folder_path` (output from the `Search` module) and output file path `output_csv` in the script.
112
+ 3. Run `python filter_exist.py` to execute the filtering.
113
+
114
+ ### Download Test Videos & Verification & Full Download
115
+
116
+ Use a downloader of choice to fetch video clips for screening. After verification, proceed with full downloads of usable videos.
117
+
118
+ ## Download
119
+
120
+ ### Full Video Download
121
+
122
+ **Path:** [toolset/crawl/download/download_list.sh](../toolset/crawl/download/download_list.sh)
123
+
124
+ **Description:** Downloads all videos based on Video IDs provided in a CSV file. Supports multi-process downloading. Results are logged in `success_list.txt` and `fail_list.txt` in the current directory.
125
+
126
+ **Usage Instructions:**
127
+
128
+ Modify relevant parameters in [download_list.sh](../toolset/crawl/download/download_list.sh), then execute:
129
+
130
+ ```bash
131
+ bash download_list.sh
132
+ ```
133
+
134
+ ### Batch Download Function
135
+
136
+ The `download_list_360` function in [toolset/crawl/core/download/download_list.py](../toolset/crawl/core/download/download_list.py) enables batch downloading. Refer to the function documentation for usage. Common configurations include:
137
+
138
+ - **Clip Downloading**: Use `specify_start` and `time_interval` parameters (see function docs for details).
139
+ - **Multi-process Downloading**: Set the number of parallel downloads via the `jobs` parameter.
140
+ - **Custom Cookies**: Specify cookies using the `cookie` parameter.
141
+ - **Proxy Configuration**: Configure proxy servers via the `proxy` parameter.
docs/img/clean.png ADDED

Git LFS Details

  • SHA256: 51cc0fddc392327f4b9d191730894e37cde6b7e586e709c2cbe05e7fd68872de
  • Pointer size: 131 Bytes
  • Size of remote file: 206 kB
docs/img/crawl.png ADDED

Git LFS Details

  • SHA256: 8e7d39e5ed564e7cd2a4e8b81004ada98abfc2444c58dfdb4426ac692aa2263a
  • Pointer size: 131 Bytes
  • Size of remote file: 123 kB
toolset/clean/ImageBind/test.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import os
3
+ import csv
4
+ from tqdm import tqdm
5
+ from imagebind import data
6
+ from imagebind.models import imagebind_model
7
+ from imagebind.models.imagebind_model import ModalityType
8
+ from pathlib import Path
9
+ import pandas as pd
10
+ import random
11
+ import torch.nn.functional as F
12
+
13
+ # Set device: Use GPU if available, otherwise CPU
14
+ device = ""
15
+
16
+ # Load ImageBind model
17
+ try:
18
+ model = imagebind_model.imagebind_huge(pretrained=True)
19
+ model.eval()
20
+ model.to(device)
21
+ except Exception as e:
22
+ print(f"Error loading the model: {e}")
23
+ exit(1) # Exit if model loading fails
24
+
25
+ # Set audio and video folder paths
26
+ audio_folder = ""
27
+ video_folder = ""
28
+
29
+ # Read CSV file
30
+ csv_file = ''
31
+ try:
32
+ df = pd.read_csv(csv_file)
33
+ except Exception as e:
34
+ print(f"Error reading CSV file {csv_file}: {e}")
35
+ exit(1)
36
+
37
+ # Prepare output CSV and error log files
38
+ output_csv = 'output.csv'
39
+ error_log_file = 'test.log'
40
+
41
+ # Track processed files by reading existing output (if any)
42
+ processed_files = set()
43
+ if os.path.exists(output_csv):
44
+ try:
45
+ with open(output_csv, mode='r') as file:
46
+ reader = csv.reader(file)
47
+ for row in reader:
48
+ file_name = row[0] # Full filename
49
+ processed_files.add(file_name) # Record processed files
50
+ except Exception as e:
51
+ print(f"Error reading the output CSV file {output_csv}: {e}")
52
+ exit(1)
53
+
54
+ # Initialize lists for matched audio-video pairs
55
+ paired_audio_paths = []
56
+ paired_video_paths = []
57
+
58
+ # Open error log for writing
59
+ with open(error_log_file, mode='a') as error_log:
60
+ # Process each file_id, skipping already processed files
61
+ for file_id in df['file_id']:
62
+ audio_file = f"{file_id}.flac"
63
+ video_file = f"000040.jpg"
64
+
65
+ video_path = os.path.join(video_folder, file_id, video_file)
66
+ audio_path = os.path.join(audio_folder, audio_file)
67
+
68
+ # Get basenames without extensions
69
+ video_name = os.path.basename(video_path)
70
+ audio_name = os.path.basename(audio_path)
71
+ video_name_no_ext = os.path.splitext(video_name)[0]
72
+ audio_name_no_ext = os.path.splitext(audio_name)[0]
73
+
74
+ # Skip if already processed
75
+ if video_name_no_ext in processed_files or audio_name_no_ext in processed_files:
76
+ continue
77
+
78
+ # Validate file existence
79
+ if not os.path.exists(video_path):
80
+ error_log.write(f"Video directory not found: {video_path}\n")
81
+ continue
82
+
83
+ if not os.path.exists(audio_path):
84
+ error_log.write(f"Audio file not found: {audio_path}\n")
85
+ continue
86
+
87
+ paired_audio_paths.append(audio_path)
88
+ paired_video_paths.append(video_path)
89
+
90
+ print(f"Successfully matched {len(paired_audio_paths)} audio-video pairs.")
91
+
92
+ # Batch processing configuration
93
+ batch_size = 16
94
+ num_batches = len(paired_video_paths) // batch_size + 1
95
+
96
+ # Process and write results
97
+ try:
98
+ with open(output_csv, mode='a', newline='') as file:
99
+ writer = csv.writer(file)
100
+
101
+ with torch.no_grad():
102
+ for i in tqdm(range(num_batches), desc="Processing Batches"):
103
+ start_idx = i * batch_size
104
+ end_idx = min((i + 1) * batch_size, len(paired_video_paths))
105
+
106
+ # Get current batch paths
107
+ video_batch_paths = paired_video_paths[start_idx:end_idx]
108
+ audio_batch_paths = paired_audio_paths[start_idx:end_idx]
109
+
110
+ try:
111
+ # Load batch data
112
+ video_batch = data.load_and_transform_vision_data(video_batch_paths, device)
113
+ audio_batch = data.load_and_transform_audio_data(audio_batch_paths, device)
114
+ except RuntimeError as e:
115
+ print(f"Error loading video data in batch {i}: {e}")
116
+ continue
117
+ except Exception as e:
118
+ print(f"Unexpected error in batch {i}: {e}")
119
+ continue
120
+
121
+ try:
122
+ # Model inference
123
+ inputs = {
124
+ ModalityType.VISION: video_batch,
125
+ ModalityType.AUDIO: audio_batch,
126
+ }
127
+
128
+ embeddings = model(inputs)
129
+
130
+ # Calculate similarity
131
+ audio_embedding = embeddings[ModalityType.AUDIO]
132
+ video_embedding = embeddings[ModalityType.VISION]
133
+ batch_similarity = F.cosine_similarity(video_embedding, audio_embedding) * 10
134
+
135
+ # Write results
136
+ for video_path, similarity in zip(video_batch_paths, batch_similarity.tolist()):
137
+ video_name = os.path.basename(os.path.dirname(video_path))
138
+ writer.writerow([video_name, similarity])
139
+ except Exception as e:
140
+ print(f"Error processing batch {i}: {e}")
141
+ continue
142
+ except Exception as e:
143
+ print(f"Error writing to the output CSV file {output_csv}: {e}")
144
+ exit(1)
145
+
146
+ print(f"Similarity scores have been saved to {output_csv}.")
147
+ print(f"Any missing files have been logged in {error_log_file}.")
toolset/clean/SenseVoice/check_voice.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import csv
3
+ from tqdm import tqdm # For progress bar display
4
+ from funasr import AutoModel
5
+ from funasr.utils.postprocess_utils import rich_transcription_postprocess
6
+
7
+ # Define model path
8
+ model_dir = "iic/SenseVoiceSmall"
9
+
10
+ # Initialize model
11
+ model = AutoModel(
12
+ model=model_dir,
13
+ trust_remote_code=True,
14
+ remote_code="./model.py",
15
+ vad_model="fsmn-vad",
16
+ vad_kwargs={"max_single_segment_time": 30000},
17
+ device="cuda:0",
18
+ )
19
+
20
+ # Define audio folder path
21
+ audio_folder = ""
22
+
23
+ # Output CSV file path
24
+ output_csv = "./recognition_results.csv"
25
+
26
+ # Get all .flac files in audio folder
27
+ audio_files = [f for f in os.listdir(audio_folder) if f.endswith(".flac")]
28
+
29
+ # Prepare CSV file and write header (if file is empty)
30
+ if not os.path.exists(output_csv) or os.path.getsize(output_csv) == 0:
31
+ with open(output_csv, mode="w", newline="", encoding="utf-8") as file:
32
+ writer = csv.writer(file)
33
+ writer.writerow(["Audio File", "Transcription"]) # CSV column headers
34
+
35
+ # Get existing processed audio files to avoid reprocessing
36
+ existing_files = set()
37
+ with open(output_csv, mode="r", newline="", encoding="utf-8") as file:
38
+ reader = csv.reader(file)
39
+ next(reader) # Skip header row
40
+ for row in reader:
41
+ existing_files.add(row[0]) # Add processed files to set
42
+
43
+ # Process all .flac files in audio folder
44
+ with open(output_csv, mode="a", newline="", encoding="utf-8") as file:
45
+ writer = csv.writer(file)
46
+
47
+ # Show progress bar using tqdm
48
+ for audio_file in tqdm(audio_files, desc="Processing", unit="file"):
49
+ # Skip if file already processed
50
+ if audio_file in existing_files:
51
+ continue
52
+
53
+ audio_path = os.path.join(audio_folder, audio_file)
54
+
55
+ try:
56
+ # Perform speech recognition
57
+ res = model.generate(
58
+ input=audio_path,
59
+ cache={},
60
+ language="auto", # Auto-detect language
61
+ use_itn=True,
62
+ batch_size_s=60,
63
+ merge_vad=True,
64
+ merge_length_s=15,
65
+ )
66
+
67
+ # Get transcription with post-processing
68
+ transcription = rich_transcription_postprocess(res[0]["text"])
69
+
70
+ # Mark as "none!" if transcription is empty
71
+ if not transcription.strip():
72
+ transcription = "none!"
73
+
74
+ except Exception as e:
75
+ # Record error if recognition fails
76
+ transcription = f"Error: {str(e)}"
77
+
78
+ # Write filename and transcription to CSV
79
+ writer.writerow([audio_file, transcription])
80
+
81
+ print("Recognition completed and saved to CSV.")
toolset/clean/requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ funasr==1.1.16
2
+ imagebind==0.1.0
3
+ numpy==2.2.4
4
+ opencv_python==4.10.0.84
5
+ pandas==2.2.3
6
+ pydub==0.25.1
7
+ torch==1.13.1
8
+ tqdm==4.67.1
toolset/clean/silent/check_new_silent.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import asyncio
3
+ from pydub import AudioSegment
4
+ from tqdm import tqdm
5
+ import numpy as np
6
+
7
+ # Async load single audio file
8
+ async def load_audio_file(audio_path):
9
+ try:
10
+ return AudioSegment.from_file(audio_path)
11
+ except Exception as e:
12
+ print(f"Error loading {audio_path}: {e}")
13
+ return None
14
+
15
+ # Detect if audio is silent
16
+ def is_silent(audio, silence_threshold=-35, chunk_size=20):
17
+ silence_count = 0
18
+ total_chunks = len(audio) // chunk_size
19
+
20
+ for i in range(total_chunks):
21
+ chunk = audio[i * chunk_size:(i + 1) * chunk_size]
22
+
23
+ # Convert multi-channel audio to numpy array and process each channel
24
+ channels = chunk.split_to_mono() # Split audio into mono channels
25
+ max_dbfs = float('-inf') # Initialize max value as negative infinity
26
+
27
+ for channel in channels:
28
+ # Get dBFS amplitude for each channel
29
+ max_dbfs = max(max_dbfs, channel.dBFS)
30
+
31
+ # Consider silent if max dBFS is below threshold
32
+ if max_dbfs < silence_threshold:
33
+ silence_count += 1
34
+
35
+ silence_ratio = silence_count / total_chunks
36
+ return silence_ratio > 0.9 # Mark as silent if over 90% is silent
37
+
38
+ # Process all audio files in directory
39
+ async def process_directory(directory_path, output_file, silence_threshold=-35.0, chunk_size=20):
40
+ audio_files = [f for f in os.listdir(directory_path) if f.endswith('.flac')]
41
+ audio_paths = [os.path.join(directory_path, f) for f in audio_files]
42
+
43
+ silent_files = []
44
+
45
+ # Process files in batches
46
+ batch_size = 16 # Process 16 files per batch
47
+ for i in tqdm(range(0, len(audio_paths), batch_size), desc="Processing batches"):
48
+ batch_audio_paths = audio_paths[i:i+batch_size]
49
+ # Async load current batch
50
+ audio_list = await asyncio.gather(*[load_audio_file(path) for path in batch_audio_paths])
51
+
52
+ # Process each audio file
53
+ for audio, audio_path in zip(audio_list, batch_audio_paths):
54
+ if audio and is_silent(audio, silence_threshold, chunk_size):
55
+ silent_files.append(os.path.basename(audio_path))
56
+
57
+ # Write silent files to output
58
+ with open(output_file, 'w') as out_file:
59
+ for file_name in silent_files:
60
+ out_file.write(f"{file_name}\n")
61
+
62
+
63
+ if __name__ == "__main__":
64
+ # Set paths
65
+ input_directory = ""
66
+ output_txt_file = ""
67
+
68
+ # Run async task
69
+ asyncio.run(process_directory(input_directory, output_txt_file))
toolset/clean/static/check_static_ffmpeg.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import os
4
+ from tqdm import tqdm
5
+ import re
6
+ import concurrent.futures
7
+
8
+ def get_video_duration(stderr_output):
9
+ """Get the duration of a video using ffmpeg."""
10
+ ffmpeg_output = stderr_output
11
+ match = re.search(r"Duration: (\d{2}):(\d{2}):(\d{2})\.(\d{2})", ffmpeg_output, re.IGNORECASE)
12
+ if match:
13
+ hours = int(match.group(1))
14
+ minutes = int(match.group(2))
15
+ seconds = int(match.group(3))
16
+ milliseconds = int(match.group(4))
17
+ total_seconds = hours * 3600 + minutes * 60 + seconds + milliseconds / 100
18
+ return total_seconds
19
+ else:
20
+ print("Duration not found in ffmpeg output.")
21
+ return 0
22
+
23
+ def get_video_dimensions(stderr_output):
24
+ """Extract video width and height from ffmpeg stderr output."""
25
+ match = re.search(r'(\d{3,4})x(\d{3,4})', stderr_output)
26
+ if match:
27
+ width = int(match.group(1))
28
+ height = int(match.group(2))
29
+ return width, height
30
+ return None, None
31
+
32
+ def get_video_fps(stderr_output):
33
+ """Extract video frame rate from ffmpeg stderr output."""
34
+ match = re.search(r'(\d+(\.\d+)?) fps', stderr_output)
35
+ if match:
36
+ fps = float(match.group(1))
37
+ return fps
38
+ return None
39
+
40
+ def calculate_mse(frame1, frame2):
41
+ """Calculate Mean Squared Error between two frames."""
42
+ frame1 = cv2.resize(frame1, (frame2.shape[1], frame2.shape[0])) # Ensure consistent dimensions
43
+ mse = np.sum((frame1 - frame2) ** 2) / float(frame1.size) # Compute MSE
44
+ return mse
45
+
46
+ def is_static(mse, threshold=5): # Using slightly lower threshold
47
+ """Determine if frame is static based on MSE threshold."""
48
+ return mse < threshold # Frame considered static if MSE below threshold
49
+
50
+ def load_frame(frame_path):
51
+ """Load a frame and convert to grayscale."""
52
+ frame = cv2.imread(frame_path)
53
+ if frame is None:
54
+ return None # Return None if frame loading fails
55
+ return cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
56
+
57
+ def detect_static_video(frame_path, frame_count=20):
58
+ """Detect if video is static by analyzing frame differences."""
59
+ try:
60
+ static_frame_count = 0
61
+ sample_count = 0
62
+
63
+ # Generate frame file paths
64
+ frame_paths = [os.path.join(frame_path, f'{frame_index*4:06d}.jpg')
65
+ for frame_index in range(1, frame_count + 1)]
66
+
67
+ # Parallel frame loading using multithreading
68
+ with concurrent.futures.ThreadPoolExecutor() as executor:
69
+ frames = list(executor.map(load_frame, frame_paths))
70
+
71
+ # Filter out failed frame loads
72
+ frames = [frame for frame in frames if frame is not None]
73
+
74
+ # Require minimum 2 frames for analysis
75
+ if len(frames) < 2:
76
+ return False # Insufficient frames for static detection
77
+
78
+ # Count static frames
79
+ prev_frame = frames[0]
80
+ for gray_frame in frames[1:]:
81
+ mse = calculate_mse(prev_frame, gray_frame)
82
+ if is_static(mse):
83
+ static_frame_count += 1
84
+ prev_frame = gray_frame # Update previous frame
85
+
86
+ # Calculate static frame ratio
87
+ sample_count = len(frames) # Actual processed frame count
88
+ static_ratio = static_frame_count / sample_count if sample_count > 0 else 0
89
+
90
+ # Video considered static if >85% frames are static
91
+ return static_ratio > 0.85
92
+
93
+ except Exception as e:
94
+ print(f"Error processing video: {frame_path}, Error: {e}")
95
+ return None # Return None to indicate error
96
+
97
+ def process_video_folder(folder_path, output_file, error_log):
98
+ """Batch process video folders for static detection."""
99
+ video_files = [f for f in os.listdir(folder_path)
100
+ if re.search(r'^[a-zA-Z0-9_-]*_.\d*0$', f)]
101
+
102
+ with open(output_file, 'w') as output:
103
+ for idx, video_file in enumerate(tqdm(video_files, desc="Processing Videos", unit="file")):
104
+ frame_path = os.path.join(folder_path, video_file)
105
+ result = detect_static_video(frame_path)
106
+
107
+ if result is None:
108
+ # Log failed processing attempts
109
+ with open(error_log, 'a') as error_output:
110
+ error_output.write(f"Error processing: {video_file}\n")
111
+ elif result:
112
+ output.write(f"{video_file}\n") # Record static video filename
113
+ print(f"{video_file} is static")
114
+
115
+ # Example usage
116
+ if __name__ == "__main__":
117
+ folder_path = '' # Video frame directory
118
+ output_file = './static_new.txt' # Static video output list
119
+ error_log = './static_new_err.txt' # Error log file
120
+
121
+ process_video_folder(folder_path, output_file, error_log)
toolset/crawl/channel/channel_analyzer.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import os
3
+ from collections import Counter
4
+ from itertools import islice
5
+ import sys
6
+ sys.path.append('..')
7
+ from core import build
8
+
9
+ youtube = build.build_youtube()
10
+
11
+ def batch(iterable, size):
12
+ """
13
+ Split an iterable into chunks of specified size.
14
+ """
15
+ it = iter(iterable)
16
+ while True:
17
+ chunk = list(islice(it, size))
18
+ if not chunk:
19
+ break
20
+ yield chunk
21
+
22
+
23
+ def get_channel_info_batch(video_ids):
24
+ """
25
+ Batch retrieve channel IDs and names using video IDs.
26
+ """
27
+ channel_info = []
28
+ try:
29
+ response = (
30
+ youtube.videos()
31
+ .list(part="snippet", id=",".join(video_ids))
32
+ .execute()
33
+ )
34
+ for item in response.get("items", []):
35
+ snippet = item["snippet"]
36
+ channel_info.append((snippet["channelId"], snippet["channelTitle"]))
37
+ except Exception as e:
38
+ print(f"Error fetching data for video_ids {video_ids}: {e}")
39
+ return channel_info
40
+
41
+
42
+ def process_single_csv(input_file):
43
+ """
44
+ Process a single CSV file to:
45
+ 1. Extract video IDs
46
+ 2. Query YouTube API for channel info
47
+ 3. Count channel occurrences
48
+ 4. Return sorted results
49
+ """
50
+ video_ids = []
51
+ with open(input_file, "r", encoding="utf-8") as infile:
52
+ reader = csv.DictReader(infile)
53
+ for row in reader:
54
+ video_ids.append(row["video_id"]) # Assuming CSV has video_id column
55
+
56
+ # Batch process channel info
57
+ channel_counter = Counter()
58
+ channel_details = {}
59
+
60
+ for video_batch in batch(video_ids, 50): # Process 50 video IDs per batch
61
+ channel_info_batch = get_channel_info_batch(video_batch)
62
+ for channel_id, channel_title in channel_info_batch:
63
+ channel_counter[channel_id] += 1
64
+ channel_details[channel_id] = channel_title
65
+
66
+ # Sort by occurrence count
67
+ sorted_channels = channel_counter.most_common()
68
+
69
+ return sorted_channels, channel_details
70
+
71
+
72
+ def process_folder(folder_path, output_file):
73
+ """
74
+ Process all CSV files in a folder to:
75
+ 1. Aggregate video IDs
76
+ 2. Collect channel statistics
77
+ 3. Merge results
78
+ 4. Output sorted results to CSV
79
+ """
80
+ all_channel_counter = Counter()
81
+ all_channel_details = {}
82
+
83
+ # Process each CSV file in folder
84
+ for filename in os.listdir(folder_path):
85
+ if filename.endswith(".csv"):
86
+ input_file = os.path.join(folder_path, filename)
87
+ print(f"Processing file: {input_file}")
88
+
89
+ # Process individual CSV
90
+ sorted_channels, channel_details = process_single_csv(input_file)
91
+
92
+ # Aggregate results
93
+ for channel_id, count in sorted_channels:
94
+ all_channel_counter[channel_id] += count
95
+ all_channel_details.update(channel_details)
96
+
97
+ # Write final results to CSV
98
+ with open(output_file, "w", encoding="utf-8", newline="") as outfile:
99
+ writer = csv.writer(outfile, quotechar='"', quoting=csv.QUOTE_ALL)
100
+ writer.writerow(["channel_id", "channel_name", "count"])
101
+ for channel_id, count in all_channel_counter.most_common():
102
+ writer.writerow(
103
+ [channel_id, all_channel_details[channel_id], count]
104
+ )
105
+
106
+
107
+ # Example execution
108
+ if __name__ == "__main__":
109
+ import argparse
110
+
111
+ parser = argparse.ArgumentParser()
112
+ parser.add_argument(
113
+ "-i",
114
+ "--input-dir",
115
+ help="Path to folder containing CSV files",
116
+ required=True,
117
+ )
118
+ parser.add_argument(
119
+ "-o",
120
+ "--output-csv",
121
+ help="Output CSV file path",
122
+ default="output.csv",
123
+ )
124
+ args = parser.parse_args()
125
+ folder_path = args.input_dir # CSV files directory
126
+ output_csv = args.output_csv # Output file path
127
+ process_folder(folder_path, output_csv)
toolset/crawl/channel/get_channel_vids.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Retrieve all 360-degree video IDs from channels with count >= threshold,
3
+ and output to corresponding directory.
4
+ """
5
+ import os
6
+ import sys
7
+ import csv
8
+ from tqdm import tqdm
9
+ sys.path.append("..")
10
+ from core import build, channel
11
+
12
+ if __name__ == "__main__":
13
+ # Argument parsing
14
+ parser = argparse.ArgumentParser(
15
+ description="Extract 360-degree videos from qualified channels"
16
+ )
17
+ parser.add_argument(
18
+ "-i", "--input-csv",
19
+ type=str,
20
+ required=True,
21
+ help="Input CSV file containing channel statistics"
22
+ )
23
+ parser.add_argument(
24
+ "-o", "--output-dir",
25
+ type=str,
26
+ required=True,
27
+ help="Output directory for video ID files"
28
+ )
29
+ parser.add_argument(
30
+ "-t", "--threshold",
31
+ type=int,
32
+ default=3,
33
+ help="Minimum count threshold for channel inclusion"
34
+ )
35
+ parser.add_argument(
36
+ "-d", "--database",
37
+ type=str,
38
+ default=None,
39
+ help="Optional database CSV for channel filtering"
40
+ )
41
+ args = parser.parse_args()
42
+
43
+ # Initialize YouTube API client
44
+ youtube = build.build_youtube()
45
+ os.makedirs(args.output_dir, exist_ok=True)
46
+
47
+ # Load database channel IDs if provided
48
+ database = set()
49
+ if args.database:
50
+ with open(args.database, "r") as f:
51
+ reader = csv.DictReader(f)
52
+ database = {row["channel_id"] for row in reader}
53
+
54
+ # Filter channels by threshold and database
55
+ qualified_channels = []
56
+ with open(args.input_csv, "r") as f:
57
+ reader = csv.DictReader(f)
58
+ for row in reader:
59
+ if int(row["count"]) >= args.threshold:
60
+ if row["channel_id"] not in database:
61
+ qualified_channels.append(row["channel_id"])
62
+ else:
63
+ print(f"Skipping {row['channel_name']}[{row['channel_id']}]")
64
+
65
+ # Process qualified channels
66
+ for channel_id in tqdm(qualified_channels, desc="Processing channels"):
67
+ output_file = os.path.join(args.output_dir, f"{channel_id}.csv")
68
+
69
+ # Skip if already processed
70
+ if os.path.exists(output_file):
71
+ print(f"Skipping existing: {channel_id}")
72
+ continue
73
+
74
+ # Get 360-degree video IDs
75
+ video_ids = channel.get_channel_video_ids_360(youtube, channel_id)
76
+
77
+ # Write to CSV
78
+ with open(output_file, "w") as f:
79
+ f.write("video_id\n")
80
+ f.writelines(f"{vid}\n" for vid in video_ids)
toolset/crawl/channel/get_channels_vids.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Collect all 360-degree video IDs from specified channels and output to CSV
3
+ """
4
+ import os
5
+ import sys
6
+ import csv
7
+ import argparse
8
+ from tqdm import tqdm
9
+
10
+ sys.path.append("..")
11
+ import core
12
+ from core import build, channel
13
+
14
+ if __name__ == "__main__":
15
+ # Set up argument parser
16
+ parser = argparse.ArgumentParser(
17
+ description="Collect 360-degree videos from YouTube channels"
18
+ )
19
+ parser.add_argument(
20
+ "-i", "--input-csv",
21
+ type=str,
22
+ required=True,
23
+ help="Input CSV file containing channel IDs"
24
+ )
25
+ parser.add_argument(
26
+ "-o", "--output-csv",
27
+ type=str,
28
+ required=True,
29
+ help="Output CSV file for 360-degree video IDs"
30
+ )
31
+ args = parser.parse_args()
32
+
33
+ # Initialize YouTube API client
34
+ youtube = build.build_youtube()
35
+
36
+ # Get channel IDs from input file
37
+ channel_ids = core.filelist.get_channel_ids(args.input_csv)
38
+
39
+ # Collect all 360-degree video IDs
40
+ video_ids = []
41
+ for channel_id in tqdm(channel_ids, desc="Processing channels"):
42
+ cur_video_ids = channel.get_channel_video_ids_360(youtube, channel_id)
43
+ print(f"Channel {channel_id}: Found {len(cur_video_ids)} 360-degree videos")
44
+ video_ids.extend(cur_video_ids)
45
+
46
+ # Write results to CSV
47
+ with open(args.output_csv, "w", newline="", encoding="utf-8") as f:
48
+ writer = csv.writer(f)
49
+ writer.writerow(["video_id"])
50
+ writer.writerows([[vid] for vid in video_ids])
51
+
52
+ print(f"\nCompleted. Saved {len(video_ids)} 360-degree video IDs to {args.output_csv}")
toolset/crawl/channel/get_test_list.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pandas as pd
3
+ import random
4
+ import argparse
5
+
6
+ def process_csv(input_folder, output_folder, sample_size=10):
7
+ """
8
+ Process CSV files in the input folder and randomly select a specified number of video_ids.
9
+
10
+ Args:
11
+ input_folder: Path to folder containing input CSV files
12
+ output_folder: Path to folder where processed files will be saved
13
+ sample_size: Number of video_ids to randomly select (default: 10)
14
+ """
15
+ # Get all CSV files in input folder
16
+ csv_files = [f for f in os.listdir(input_folder) if f.endswith('.csv')]
17
+
18
+ # Process each CSV file
19
+ for csv_file in csv_files:
20
+ # Build input and output file paths
21
+ input_file_path = os.path.join(input_folder, csv_file)
22
+ output_file_path = os.path.join(output_folder, csv_file)
23
+
24
+ # Read CSV file
25
+ df = pd.read_csv(input_file_path)
26
+
27
+ # Check if 'video_id' column exists
28
+ if 'video_id' not in df.columns:
29
+ print(f"Warning: 'video_id' column not found in {csv_file}. Skipping...")
30
+ continue
31
+
32
+ # Randomly select specified number of video_ids
33
+ all_video_ids = df['video_id'].tolist()
34
+ if len(all_video_ids) > sample_size:
35
+ selected_video_ids = random.sample(all_video_ids, sample_size)
36
+ else:
37
+ selected_video_ids = all_video_ids
38
+
39
+ selected_file_ids = [video_id + '_5' for video_id in selected_video_ids]
40
+
41
+ # Create new DataFrame with selected file_ids
42
+ selected_df = pd.DataFrame({'file_id': selected_file_ids})
43
+
44
+ # Save results to output folder
45
+ selected_df.to_csv(output_file_path, index=False)
46
+
47
+ print(f"Processed {csv_file}, selected {len(selected_video_ids)} video_ids, saved to {output_file_path}")
48
+
49
+ def main():
50
+ # Create argument parser
51
+ parser = argparse.ArgumentParser(
52
+ description="Process CSV files and randomly select video_ids."
53
+ )
54
+
55
+ # Add command line arguments
56
+ parser.add_argument('-i', '--input-folder',
57
+ type=str,
58
+ help="Input folder containing CSV files",
59
+ required=True)
60
+ parser.add_argument('-o', '--output-folder',
61
+ type=str,
62
+ help="Output folder to save the result CSV files",
63
+ required=True)
64
+ parser.add_argument('-n', '--sample-size',
65
+ type=int,
66
+ default=10,
67
+ help="Number of video_ids to randomly select (default: 10)")
68
+
69
+ # Parse arguments
70
+ args = parser.parse_args()
71
+
72
+ # Create output folder if it doesn't exist
73
+ os.makedirs(args.output_folder, exist_ok=True)
74
+
75
+ # Process CSV files
76
+ process_csv(args.input_folder, args.output_folder, args.sample_size)
77
+
78
+ if __name__ == '__main__':
79
+ main()
toolset/crawl/core/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from . import build, filters, channel, search, filelist
toolset/crawl/core/build.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from googleapiclient.discovery import build
2
+ import os
3
+ import requests
4
+ from googleapiclient.http import HttpRequest
5
+ import httplib2
6
+
7
+ __API_KEY = "YOUR_YOUTUBE_API_KEY_HERE" # Enter your YouTube API key here
8
+
9
+ def build_youtube(api_key=None, proxy_host=None, proxy_port=None):
10
+ """Initialize and configure the YouTube API client
11
+
12
+ Args:
13
+ api_key (str, optional): YouTube Data API key. Uses default if not provided.
14
+ proxy_host (str, optional): Proxy server host address
15
+ proxy_port (int, optional): Proxy server port number
16
+
17
+ Returns:
18
+ googleapiclient.discovery.Resource: Configured YouTube API client instance
19
+ """
20
+ if api_key is None:
21
+ api_key = __API_KEY
22
+
23
+ # Configure proxy settings
24
+ http = httplib2.Http(
25
+ proxy_info=httplib2.ProxyInfo(
26
+ proxy_type=httplib2.socks.PROXY_TYPE_HTTP,
27
+ proxy_host=proxy_host,
28
+ proxy_port=proxy_port,
29
+ )
30
+ )
31
+
32
+ YOUTUBE_API_SERVICE_NAME = "youtube"
33
+ YOUTUBE_API_VERSION = "v3"
34
+
35
+ # Initialize YouTube API client
36
+ youtube = build(
37
+ YOUTUBE_API_SERVICE_NAME,
38
+ YOUTUBE_API_VERSION,
39
+ developerKey=api_key,
40
+ http=http,
41
+ )
42
+
43
+ return youtube
toolset/crawl/core/channel.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+
4
+
5
+ def get_channel_video_ids(youtube, channel_id, output_tmp=False):
6
+ """
7
+ Retrieve all video IDs from a specified YouTube channel.
8
+
9
+ Args:
10
+ youtube: Initialized YouTube API client
11
+ channel_id: YouTube channel ID
12
+ output_tmp: Whether to save temporary JSON outputs
13
+ Returns:
14
+ List of video IDs
15
+ """
16
+ video_ids = []
17
+
18
+ # Get channel's upload playlist ID
19
+ request = youtube.channels().list(part="contentDetails", id=channel_id)
20
+ response = request.execute()
21
+
22
+ if output_tmp:
23
+ os.makedirs("tmp", exist_ok=True)
24
+ with open("tmp/get_playlist.json", "w", encoding="utf-8") as f:
25
+ json.dump(response, f, indent=2)
26
+
27
+ upload_playlist_id = response["items"][0]["contentDetails"][
28
+ "relatedPlaylists"
29
+ ]["uploads"]
30
+
31
+ # Get all videos from upload playlist
32
+ next_page_token = None
33
+ while True:
34
+ playlist_request = youtube.playlistItems().list(
35
+ part="snippet",
36
+ playlistId=upload_playlist_id,
37
+ maxResults=50, # Max 50 videos per request
38
+ pageToken=next_page_token,
39
+ )
40
+
41
+ playlist_response = playlist_request.execute()
42
+
43
+ if output_tmp:
44
+ token_str = next_page_token if next_page_token else "first_page"
45
+ with open(
46
+ f"tmp/get_video_next_{token_str}.json",
47
+ "w",
48
+ encoding="utf-8",
49
+ ) as f:
50
+ json.dump(playlist_response, f, indent=2)
51
+
52
+ # Extract video IDs
53
+ for item in playlist_response["items"]:
54
+ video_ids.append(item["snippet"]["resourceId"]["videoId"])
55
+
56
+ # Check for more pages
57
+ next_page_token = playlist_response.get("nextPageToken")
58
+ if not next_page_token:
59
+ break
60
+
61
+ return video_ids
62
+
63
+
64
+ def get_channel_video_ids_360(youtube, channel_id, output_tmp=False):
65
+ """Get only 360-degree video IDs from a channel"""
66
+ from . import filters
67
+
68
+ video_ids = get_channel_video_ids(youtube, channel_id, output_tmp)
69
+ return filters.filter_360(youtube, video_ids, output_tmp)
70
+
71
+
72
+ if __name__ == "__main__":
73
+ import argparse
74
+
75
+ parser = argparse.ArgumentParser(
76
+ description="Retrieve video IDs from YouTube channel"
77
+ )
78
+ parser.add_argument(
79
+ "--channel-id",
80
+ type=str,
81
+ required=True,
82
+ help="YouTube channel ID to process"
83
+ )
84
+ args = parser.parse_args()
85
+
86
+ import build
87
+ youtube = build.build_youtube()
88
+
89
+ # Test functionality
90
+ video_ids = get_channel_video_ids(youtube, args.channel_id, True)
91
+ print(video_ids)
toolset/crawl/core/download/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from . import download_list
toolset/crawl/core/download/download_list.py ADDED
@@ -0,0 +1,1073 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import os
3
+ from tqdm import tqdm
4
+ import subprocess
5
+ import sys
6
+ from multiprocessing import Pool, Lock
7
+ from typing import List, Dict, Any, Optional
8
+
9
+
10
+ class DownloadError(Exception):
11
+ def __init__(self, args: Dict[str, Any]):
12
+ self.items = args["items"]
13
+ self.result = args["result"]
14
+
15
+
16
+ def _check_size(check_files: List[str], size=1024, remove: bool = True):
17
+ """
18
+ check if all files is larger than the limit,
19
+ :param remove: if True, remove files that less than that size.
20
+ """
21
+
22
+ check_success = True
23
+ for file_name in check_files:
24
+ if not os.path.exists(file_name):
25
+ check_success = False
26
+ continue
27
+ if os.path.getsize(file_name) < size:
28
+ check_success = False
29
+ if remove:
30
+ os.remove(file_name)
31
+ else:
32
+ break
33
+ return check_success
34
+
35
+ def download_video_process(args: Dict):
36
+ return download_video(**args)
37
+
38
+
39
+ def download_video_segments_process(args: Dict):
40
+ return download_video_segments(**args)
41
+
42
+
43
+ def download_4ch_segments_process(args: Dict):
44
+ return download_4ch_segments(**args)
45
+
46
+ def download_360_segments_process(args: Dict):
47
+ return download_360_segments(**args)
48
+
49
+ def download_360_process(args: Dict):
50
+ return download_360(**args)
51
+
52
+ def download_video(
53
+ video_id: str,
54
+ output_folder: str,
55
+ ext: str = None,
56
+ proxy: str = None,
57
+ try_time: int = 2,
58
+ format_code: str = "bv+ba",
59
+ check_size: bool = True,
60
+ skip_exists: bool = True,
61
+ time_out: int = 30,
62
+ ) -> List[str]:
63
+ """
64
+ :param skip_exists: whether to skip the existing files. If True, ext should be specified.
65
+ :param ext: extension of the output file without dot.
66
+ :return: List of success file_ids
67
+ """
68
+ # Check format code with ext
69
+ if ext is not None:
70
+ if format_code.find("[ext=") != -1:
71
+ if format_code.find(f"[ext={ext}]") == -1:
72
+ raise ValueError(
73
+ f"Format code {format_code} does not match the extension {ext}"
74
+ )
75
+ else:
76
+ format_code += f"[ext={ext}]"
77
+
78
+ file_items = [video_id]
79
+ file_path_base = os.path.join(output_folder, video_id)
80
+ if skip_exists:
81
+ if ext is None:
82
+ raise ValueError("ext should be specified when skip_exists is True")
83
+ if os.path.exists(file_path_base + "." + ext):
84
+ print(f"{video_id} already exists")
85
+ return file_items
86
+
87
+ # specify command
88
+ cmd = [
89
+ "yt-dlp",
90
+ "-f",
91
+ format_code,
92
+ f"https://www.youtube.com/watch?v={video_id}",
93
+ "-o",
94
+ f"{file_path_base}.%(ext)s",
95
+ "--socket-timeout",
96
+ str(time_out),
97
+ "--abort-on-error",
98
+ "--abort-on-unavailable-fragments",
99
+ "-N",
100
+ "4",
101
+ ]
102
+
103
+ if proxy is not None:
104
+ cmd += ["--proxy", proxy]
105
+
106
+ try_id = 0
107
+ success = False
108
+ result = None
109
+ while try_id < try_time and not success:
110
+ print(f"Downloading video {video_id}...")
111
+ result = subprocess.run(
112
+ cmd,
113
+ capture_output=True,
114
+ text=True,
115
+ )
116
+ # result = subprocess.run(cmd)
117
+ if result.returncode == 0:
118
+ if check_size:
119
+ file_names = [
120
+ os.path.join(output_folder, file_item + "." + ext)
121
+ for file_item in file_items
122
+ ]
123
+ success = _check_size(file_names, remove=True)
124
+ else:
125
+ success = True
126
+ if not success:
127
+ print(
128
+ f"[WARNING] Failed to download video items {video_id}, retrying...({try_id + 1}/{try_time})"
129
+ )
130
+ try_id += 1
131
+
132
+ if not success:
133
+ raise DownloadError(
134
+ {
135
+ "items": file_items,
136
+ "result": result,
137
+ }
138
+ )
139
+ return file_items
140
+
141
+
142
+ def download_4ch_segments(
143
+ video_id: str,
144
+ output_folder: str,
145
+ start_times: List[int],
146
+ time_interval: int = 10,
147
+ proxy: str = None,
148
+ try_time: int = 4,
149
+ check_size: bool = True,
150
+ skip_exists: bool = True,
151
+ time_out: int = 30,
152
+ ):
153
+ """
154
+ :param skip_exists: whether to skip the existing files. If True, ext should be specified.
155
+ :param check_size: whether to check file size. If True, remove files that less than 1024 bytes and ext should be specified.
156
+ :param ext: extension of the output file without dot.
157
+ :return: List of success file_ids
158
+ """
159
+ format_code = "ba*[audio_channels=4]"
160
+ ext = "webm"
161
+
162
+ origin_file_items = [
163
+ video_id + "_" + str(start_time) for start_time in start_times
164
+ ]
165
+ file_path_base = os.path.join(output_folder, video_id)
166
+ if skip_exists:
167
+ original_start_times = start_times
168
+ start_times = []
169
+ for st in original_start_times:
170
+ if os.path.exists(file_path_base + "_" + str(st) + "." + ext):
171
+ print(f"{video_id}_{st} already exists")
172
+ else:
173
+ start_times.append(st)
174
+
175
+ if len(start_times) == 0:
176
+ return origin_file_items
177
+
178
+ end_times = [t + time_interval for t in start_times]
179
+
180
+ file_items = [
181
+ video_id + "_" + str(start_time) for start_time in start_times
182
+ ]
183
+
184
+ # specify command
185
+ cmd = [
186
+ "yt-dlp",
187
+ "-f",
188
+ format_code,
189
+ f"https://www.youtube.com/watch?v={video_id}",
190
+ "-o",
191
+ f"{file_path_base}_%(section_start)d.%(ext)s",
192
+ "--socket-timeout",
193
+ str(time_out),
194
+ "--abort-on-error",
195
+ "--abort-on-unavailable-fragments",
196
+ "-N",
197
+ "4",
198
+ "--force-keyframes-at-cuts",
199
+ "--extractor-args",
200
+ "youtube:player_client=all",
201
+ "--merge-output-format",
202
+ "webm",
203
+ ]
204
+
205
+ if proxy is not None:
206
+ cmd += ["--proxy", proxy]
207
+
208
+ if start_times is not None:
209
+ for start_time, end_time in zip(start_times, end_times):
210
+ cmd += [
211
+ "--download-sections",
212
+ f"*{start_time}-{end_time}",
213
+ ]
214
+
215
+ try_id = 0
216
+ success = False
217
+ result = None
218
+ while try_id < try_time and not success:
219
+ print(f"Downloading video items {video_id}...")
220
+ result = subprocess.run(
221
+ cmd,
222
+ capture_output=True,
223
+ text=True,
224
+ )
225
+ if result.returncode == 0:
226
+ if check_size:
227
+ file_names = [
228
+ os.path.join(output_folder, file_item + "." + ext)
229
+ for file_item in file_items
230
+ ]
231
+ success = _check_size(file_names, remove=True)
232
+ else:
233
+ success = True
234
+ if not success:
235
+ print(
236
+ f"[WARNING] Failed to download video items {video_id}, retrying...({try_id + 1}/{try_time})"
237
+ )
238
+ try_id += 1
239
+
240
+ if not success:
241
+ raise DownloadError(
242
+ {
243
+ "items": file_items,
244
+ "result": result,
245
+ }
246
+ )
247
+ return file_items
248
+
249
+ def download_360(
250
+ video_id: str,
251
+ output_folder: str,
252
+ proxy: str = None,
253
+ try_time: int = 2,
254
+ check_size: bool = True,
255
+ skip_exists: bool = True,
256
+ time_out: int = 30,
257
+ cookie=None
258
+ ) -> List[str]:
259
+ """
260
+ :param skip_exists: whether to skip the existing files. If True, ext should be specified.
261
+ :param ext: extension of the output file without dot.
262
+ :return: List of success file_ids
263
+ """
264
+ # Check format code with ext
265
+ format_code = "bv[height<=1080]+ba[audio_channels=4]"
266
+ ext = "webm"
267
+
268
+ file_items = [video_id]
269
+ file_path_base = os.path.join(output_folder, video_id)
270
+ if skip_exists:
271
+ if ext is None:
272
+ raise ValueError("ext should be specified when skip_exists is True")
273
+ if os.path.exists(file_path_base + "." + ext):
274
+ print(f"{video_id} already exists")
275
+ return file_items
276
+
277
+ print(file_path_base)
278
+ # specify command
279
+ cmd = [
280
+ "yt-dlp",
281
+ "-f",
282
+ format_code,
283
+ f"https://www.youtube.com/watch?v={video_id}",
284
+ "-o",
285
+ f"{file_path_base}.%(ext)s",
286
+ "--socket-timeout",
287
+ str(time_out),
288
+ "--abort-on-error",
289
+ "--abort-on-unavailable-fragments",
290
+ "-N",
291
+ "4",
292
+ "--extractor-args",
293
+ "youtube:player_client=all",
294
+ "--merge-output-format",
295
+ ext,
296
+ ]
297
+
298
+ if proxy is not None:
299
+ cmd += ["--proxy", proxy]
300
+
301
+ if cookie is not None:
302
+ cmd += ["--cookies", cookie]
303
+
304
+ try_id = 0
305
+ success = False
306
+ result = None
307
+ while try_id < try_time and not success:
308
+ print(f"Downloading video {video_id}...")
309
+ result = subprocess.run(
310
+ cmd,
311
+ capture_output=True,
312
+ text=True,
313
+ )
314
+ # result = subprocess.run(cmd)
315
+ if result.returncode == 0:
316
+ if check_size:
317
+ file_names = [
318
+ os.path.join(output_folder, file_item + "." + ext)
319
+ for file_item in file_items
320
+ ]
321
+ success = _check_size(file_names, remove=True)
322
+ else:
323
+ success = True
324
+ if not success:
325
+ print(
326
+ f"[WARNING] Failed to download video items {video_id}, retrying...({try_id + 1}/{try_time})"
327
+ )
328
+ try_id += 1
329
+
330
+ if not success:
331
+ raise DownloadError(
332
+ {
333
+ "items": file_items,
334
+ "result": result,
335
+ }
336
+ )
337
+ return file_items
338
+
339
+
340
+ def download_360_segments(
341
+ video_id: str,
342
+ output_folder: str,
343
+ start_times: List[int],
344
+ time_interval: int = 10,
345
+ proxy: str = None,
346
+ try_time: int = 2,
347
+ check_size: bool = True,
348
+ skip_exists: bool = True,
349
+ time_out: int = 30,
350
+ cookie=None,
351
+ ):
352
+ """
353
+ :param skip_exists: whether to skip the existing files. If True, ext should be specified.
354
+ :param check_size: whether to check file size. If True, remove files that less than 1024 bytes and ext should be specified.
355
+ :param ext: extension of the output file without dot.
356
+ :return: List of success file_ids
357
+ """
358
+ format_code = "bv[height<=1440]+ba[audio_channels=4]"
359
+ ext = "webm"
360
+
361
+ origin_file_items = [
362
+ video_id + "_" + str(start_time) for start_time in start_times
363
+ ]
364
+ file_path_base = os.path.join(output_folder, video_id)
365
+ if skip_exists:
366
+ original_start_times = start_times
367
+ start_times = []
368
+ for st in original_start_times:
369
+ if os.path.exists(file_path_base + "_" + str(st) + "." + ext):
370
+ print(f"{video_id}_{st} already exists")
371
+ else:
372
+ start_times.append(st)
373
+
374
+ if len(start_times) == 0:
375
+ return origin_file_items
376
+
377
+ end_times = [t + time_interval for t in start_times]
378
+
379
+ file_items = [
380
+ video_id + "_" + str(start_time) for start_time in start_times
381
+ ]
382
+
383
+ # specify command
384
+ cmd = [
385
+ "yt-dlp",
386
+ "-f",
387
+ format_code,
388
+ f"https://www.youtube.com/watch?v={video_id}",
389
+ "-o",
390
+ f"{file_path_base}_%(section_start)d.%(ext)s",
391
+ "--socket-timeout",
392
+ str(time_out),
393
+ "--abort-on-error",
394
+ "--abort-on-unavailable-fragments",
395
+ "-N",
396
+ "4",
397
+ "--force-keyframes-at-cuts",
398
+ "--extractor-args",
399
+ "youtube:player_client=all",
400
+ "--merge-output-format",
401
+ "webm",
402
+ ]
403
+
404
+ if proxy is not None:
405
+ cmd += ["--proxy", proxy]
406
+
407
+ if cookie is not None:
408
+ cmd += ["--cookies", cookie]
409
+
410
+ if start_times is not None:
411
+ for start_time, end_time in zip(start_times, end_times):
412
+ cmd += [
413
+ "--download-sections",
414
+ f"*{start_time}-{end_time}",
415
+ ]
416
+
417
+ try_id = 0
418
+ success = False
419
+ result = None
420
+ while try_id < try_time and not success:
421
+ print(f"Downloading video items {video_id}...")
422
+ result = subprocess.run(
423
+ cmd,
424
+ capture_output=True,
425
+ text=True,
426
+ )
427
+ if result.returncode == 0:
428
+ if check_size:
429
+ file_names = [
430
+ os.path.join(output_folder, file_item + "." + ext)
431
+ for file_item in file_items
432
+ ]
433
+ success = _check_size(file_names, remove=True)
434
+ else:
435
+ success = True
436
+ if not success:
437
+ stderr = result.stderr
438
+ if stderr.find("format is not available") != -1:
439
+ print(
440
+ f"[WARNING] Skip {video_id} since format not available({try_id + 1}/{try_time})"
441
+ )
442
+ break
443
+ print(
444
+ f"[WARNING] Failed to download video items {video_id}, retrying...({try_id + 1}/{try_time})"
445
+ )
446
+ try_id += 1
447
+
448
+ if not success:
449
+ raise DownloadError(
450
+ {
451
+ "items": file_items,
452
+ "result": result,
453
+ }
454
+ )
455
+ return file_items
456
+
457
+
458
+ def download_video_segments(
459
+ video_id: str,
460
+ output_folder: str,
461
+ start_times: List[int],
462
+ ext: str = None,
463
+ time_interval: int = 10,
464
+ proxy: str = None,
465
+ try_time: int = 2,
466
+ check_size: bool = True,
467
+ skip_exists: bool = True,
468
+ time_out: int = 30,
469
+ format_code: str = "bv+ba",
470
+ ) -> List[str]:
471
+ """
472
+ :param skip_exists: whether to skip the existing files. If True, ext should be specified.
473
+ :param check_size: whether to check file size. If True, remove files that less than 1024 bytes and ext should be specified.
474
+ :param ext: extension of the output file without dot.
475
+ :return: List of success file_ids
476
+ """
477
+ # Check check_size with ext
478
+ if check_size and ext is None:
479
+ raise ValueError("ext should be specified when check_size is True")
480
+
481
+ # Check format code with ext
482
+ if ext is not None:
483
+ if format_code.find("[ext=") != -1:
484
+ if format_code.find(f"[ext={ext}]") == -1:
485
+ raise ValueError(
486
+ f"Format code {format_code} does not match the extension {ext}"
487
+ )
488
+ else:
489
+ format_code += f"[ext={ext}]"
490
+
491
+ origin_file_items = [
492
+ video_id + "_" + str(start_time) for start_time in start_times
493
+ ]
494
+ file_path_base = os.path.join(output_folder, video_id)
495
+ if skip_exists:
496
+ if ext is None:
497
+ raise ValueError("ext should be specified when skip_exists is True")
498
+ original_start_times = start_times
499
+ start_times = []
500
+ for st in original_start_times:
501
+ if os.path.exists(file_path_base + "_" + str(st) + "." + ext):
502
+ print(f"{video_id}_{st} already exists")
503
+ else:
504
+ start_times.append(st)
505
+
506
+ if len(start_times) == 0:
507
+ return origin_file_items
508
+
509
+ end_times = [t + time_interval for t in start_times]
510
+
511
+ file_items = [
512
+ video_id + "_" + str(start_time) for start_time in start_times
513
+ ]
514
+
515
+ # Specify command
516
+ cmd = [
517
+ "yt-dlp",
518
+ "-f",
519
+ format_code,
520
+ f"https://www.youtube.com/watch?v={video_id}",
521
+ "-o",
522
+ f"{file_path_base}_%(section_start)d.%(ext)s",
523
+ "--socket-timeout",
524
+ str(time_out),
525
+ "--abort-on-error",
526
+ "--abort-on-unavailable-fragments",
527
+ "-N",
528
+ "4",
529
+ "--force-keyframes-at-cuts",
530
+ ]
531
+
532
+ if proxy is not None:
533
+ cmd += ["--proxy", proxy]
534
+
535
+ if start_times is not None:
536
+ for start_time, end_time in zip(start_times, end_times):
537
+ cmd += [
538
+ "--download-sections",
539
+ f"*{start_time}-{end_time}",
540
+ ]
541
+
542
+ try_id = 0
543
+ success = False
544
+ result = None
545
+ while try_id < try_time and not success:
546
+ print(f"Downloading video items {video_id}...")
547
+ result = subprocess.run(
548
+ cmd,
549
+ # capture_output=True,
550
+ # text=True,
551
+ )
552
+ if result.returncode == 0:
553
+ if check_size:
554
+ file_names = [
555
+ os.path.join(output_folder, file_item + "." + ext)
556
+ for file_item in file_items
557
+ ]
558
+ success = _check_size(file_names, remove=True)
559
+ else:
560
+ success = True
561
+ if not success:
562
+ print(
563
+ f"[WARNING] Failed to download video items {video_id}, retrying...({try_id + 1}/{try_time})"
564
+ )
565
+ try_id += 1
566
+
567
+ if not success:
568
+ raise DownloadError(
569
+ {
570
+ "items": file_items,
571
+ "result": result,
572
+ }
573
+ )
574
+ return file_items
575
+
576
+
577
+ def get_video_ids(input_file: str):
578
+ video_ids = []
579
+ if input_file.endswith(".csv"): # CSV file
580
+ with open(input_file, "r") as file:
581
+ csvreader = csv.DictReader(file)
582
+ for row in csvreader:
583
+ video_ids.append(row["video_id"])
584
+ else: # Default format
585
+ with open(input_file, "r") as file:
586
+ lines = file.readlines()
587
+ for line in lines:
588
+ video_ids.append(line.strip())
589
+
590
+ return video_ids
591
+
592
+
593
+ def get_video_ids_and_start_times(input_file: str):
594
+ video_ids = []
595
+ start_times = []
596
+ lines = []
597
+ if input_file.endswith(".csv"): # CSV file
598
+ with open(input_file, "r") as file:
599
+ csvreader = csv.DictReader(file)
600
+ for row in csvreader:
601
+ lines.append(row["file_id"])
602
+ else: # Default format
603
+ with open(input_file, "r") as file:
604
+ lines = file.readlines()
605
+
606
+ for line in lines:
607
+ parts = line.rsplit("_", 1)
608
+ if len(parts) != 2:
609
+ continue
610
+ video_ids.append(parts[0])
611
+ start_times.append(int(parts[1]))
612
+
613
+ return video_ids, start_times
614
+
615
+
616
+ def get_video_ids_and_start_times_list(input_file: str):
617
+ file_ids = []
618
+ start_times_list = []
619
+ with open(input_file, "r") as file:
620
+ lines = file.readlines()
621
+ for line in lines:
622
+ parts = line.strip().split()
623
+ if len(parts) != 2:
624
+ continue
625
+
626
+ file_ids.append(parts[0])
627
+ start_times = parts[1].split(",")
628
+ start_times_list.append([int(t) for t in start_times if t.isdigit()])
629
+ return file_ids, start_times_list
630
+
631
+
632
+ def download_list_4ch(
633
+ input_file,
634
+ output_folder,
635
+ start_index=None,
636
+ end_index=None,
637
+ specify_start: str = None,
638
+ proxy=None,
639
+ time_interval=None,
640
+ fail_list_name="fail_list.txt",
641
+ success_list_name="success_list.txt",
642
+ jobs=1,
643
+ ):
644
+ """
645
+ Download video items from a list of video ids. Can specify the start time of each video.
646
+
647
+ :param input_file: input file path. Can be a csv file with column 'video_id'/'file_id'(start time specified)
648
+ or a txt file with each line as a video id. See specify_start for more details about format.
649
+ :param output_folder: output folder path.
650
+ :param start_index: start index of the video list, None means the start of the list. The list will be slice by [start_index:end_index)
651
+ :param end_index: end index of the video list, None means the end of the list. The list will be slice by [start_index:end_index)
652
+ :param specify_start: If specified, time_interval should be specified as well.
653
+ None: (Default) not to specify the start time. Each item is a video_id.
654
+ "single": specify single start time for each video_id.
655
+ For non-csv file, format each line by f'{video_id}_{start_time}'.
656
+ For CSV file, title by 'file_id' and format the same.
657
+ "multiple": specify multiple start times for each video_id. Only non-csv file is supported in this mode.
658
+ Format each line as f'{video_id} {start_times}', where start_times is a list of start times separated by ','.
659
+ """
660
+ if not os.path.exists(output_folder):
661
+ os.makedirs(output_folder)
662
+
663
+ print(f"speicify_start: {specify_start}")
664
+ if specify_start is not None:
665
+ if time_interval is None:
666
+ raise ValueError(
667
+ "time_interval should be specified when specify_start is not None."
668
+ )
669
+ if specify_start == "single":
670
+ video_ids, start_times = get_video_ids_and_start_times(input_file)
671
+ start_times_list = [[start_time] for start_time in start_times]
672
+ elif specify_start == "multiple":
673
+ video_ids, start_times_list = get_video_ids_and_start_times_list(
674
+ input_file
675
+ )
676
+ else:
677
+ raise ValueError("Invalid specify_start value.")
678
+ else:
679
+ video_ids = get_video_ids(input_file)
680
+ start_times_list = None
681
+
682
+ start_index = 0 if start_index is None else start_index
683
+ end_index = len(video_ids) if end_index is None else end_index
684
+ if start_index > 0:
685
+ print(f"Start from index:{start_index}")
686
+ if end_index != len(video_ids):
687
+ print(f"End to index:{end_index}")
688
+ video_ids = video_ids[start_index:end_index]
689
+ if specify_start:
690
+ start_times_list = start_times_list[start_index:end_index]
691
+
692
+ print(f"Downloading {len(video_ids)} videos into {output_folder}")
693
+
694
+ # create success & fail list
695
+ print(f"Success files written into {success_list_name}")
696
+ print(f"Fail files written into {fail_list_name}")
697
+ with open(success_list_name, "w") as f:
698
+ pass
699
+ with open(fail_list_name, "w") as f:
700
+ pass
701
+
702
+ pbar = tqdm(total=len(video_ids))
703
+ success_list = []
704
+ fail_list = []
705
+ (
706
+ pbar_lock,
707
+ success_lock,
708
+ fail_lock,
709
+ ) = (
710
+ Lock(),
711
+ Lock(),
712
+ Lock(),
713
+ )
714
+
715
+ def download_success(file_ids):
716
+ nonlocal pbar, success_list_name, success_list, success_list, pbar_lock
717
+ with pbar_lock:
718
+ pbar.update(1)
719
+ with success_lock:
720
+ for file_id in file_ids:
721
+ success_list.append(file_id)
722
+ with open(success_list_name, "a") as f:
723
+ f.write(f"{file_id}\n")
724
+
725
+ def download_fail(
726
+ error: DownloadError,
727
+ ):
728
+ nonlocal pbar, fail_list_name, fail_list, fail_lock, pbar_lock
729
+ with pbar_lock:
730
+ pbar.update(1)
731
+ if not isinstance(error, DownloadError):
732
+ print(f"[Error]: {error}")
733
+ raise error
734
+ file_ids = error.items
735
+ with fail_lock:
736
+ for file_id in file_ids:
737
+ fail_list.append(file_id)
738
+ with open(fail_list_name, "a") as f:
739
+ f.write(f"{file_id}\n")
740
+
741
+ # start downloading
742
+ if specify_start is None:
743
+
744
+ def arg_gen(video_ids):
745
+ for video_id in video_ids:
746
+ yield {
747
+ "video_id": video_id,
748
+ "output_folder": output_folder,
749
+ "proxy": proxy,
750
+ }
751
+
752
+ arg_iter = arg_gen(video_ids)
753
+ else:
754
+
755
+ def arg_gen(video_ids, start_times_list):
756
+ for video_id, start_times in zip(video_ids, start_times_list):
757
+ yield {
758
+ "video_id": video_id,
759
+ "start_times": start_times,
760
+ "output_folder": output_folder,
761
+ "proxy": proxy,
762
+ "time_interval": time_interval,
763
+ }
764
+
765
+ arg_iter = arg_gen(video_ids, start_times_list)
766
+
767
+ # for arg in arg_iter:
768
+ # try:
769
+ # result = (download_video_process if specify_start is None else download_video_segments_process)(arg)
770
+ # download_success(result)
771
+ # except DownloadError as e:
772
+ # download_fail(e)
773
+
774
+ p = Pool(jobs)
775
+ for arg in arg_iter:
776
+ p.apply_async(
777
+ download_4ch_segments_process,
778
+ args=(arg,),
779
+ callback=download_success,
780
+ error_callback=download_fail,
781
+ )
782
+ p.close()
783
+ p.join()
784
+
785
+ print("Finished downloading.")
786
+
787
+ # output fail status
788
+ success_list.sort()
789
+ with open(success_list_name, "w") as f:
790
+ for item in success_list:
791
+ f.write(f"{item}\n")
792
+ print(
793
+ f"{len(success_list)} success files written into {success_list_name}."
794
+ )
795
+ fail_list.sort()
796
+ with open(fail_list_name, "w") as f:
797
+ for item in fail_list:
798
+ f.write(f"{item}\n")
799
+ print(f"{len(fail_list)} fail files written into {fail_list_name}.")
800
+
801
+ def download_list_360(
802
+ input_file,
803
+ output_folder,
804
+ start_index=None,
805
+ end_index=None,
806
+ specify_start: str = None,
807
+ proxy=None,
808
+ time_interval=None,
809
+ fail_list_name="fail_list.txt",
810
+ success_list_name="success_list.txt",
811
+ jobs=1,
812
+ cookie=None,
813
+ ):
814
+ """
815
+ Download video items from a list of video ids. Can specify the start time of each video.
816
+
817
+ :param input_file: input file path. Can be a csv file with column 'video_id'/'file_id'(start time specified)
818
+ or a txt file with each line as a video id. See specify_start for more details about format.
819
+ :param output_folder: output folder path.
820
+ :param start_index: start index of the video list, None means the start of the list. The list will be slice by [start_index:end_index)
821
+ :param end_index: end index of the video list, None means the end of the list. The list will be slice by [start_index:end_index)
822
+ :param specify_start: If specified, time_interval should be specified as well.
823
+ None: (Default) not to specify the start time. Each item is a video_id.
824
+ "single": specify single start time for each video_id.
825
+ For non-csv file, format each line by f'{video_id}_{start_time}'.
826
+ For CSV file, title by 'file_id' and format the same.
827
+ "multiple": specify multiple start times for each video_id. Only non-csv file is supported in this mode.
828
+ Format each line as f'{video_id} {start_times}', where start_times is a list of start times separated by ','.
829
+ """
830
+ if not os.path.exists(output_folder):
831
+ os.makedirs(output_folder)
832
+
833
+ print(f"speicify_start: {specify_start}")
834
+ if specify_start is not None:
835
+ if time_interval is None:
836
+ raise ValueError(
837
+ "time_interval should be specified when specify_start is not None."
838
+ )
839
+ if specify_start == "single":
840
+ video_ids, start_times = get_video_ids_and_start_times(input_file)
841
+ start_times_list = [[start_time] for start_time in start_times]
842
+ elif specify_start == "multiple":
843
+ video_ids, start_times_list = get_video_ids_and_start_times_list(
844
+ input_file
845
+ )
846
+ else:
847
+ raise ValueError("Invalid specify_start value.")
848
+ else:
849
+ video_ids = get_video_ids(input_file)
850
+ start_times_list = None
851
+
852
+ start_index = 0 if start_index is None else start_index
853
+ end_index = len(video_ids) if end_index is None else end_index
854
+ if start_index > 0:
855
+ print(f"Start from index:{start_index}")
856
+ if end_index != len(video_ids):
857
+ print(f"End to index:{end_index}")
858
+ video_ids = video_ids[start_index:end_index]
859
+ if specify_start:
860
+ start_times_list = start_times_list[start_index:end_index]
861
+
862
+ print(f"Downloading {len(video_ids)} videos into {output_folder}")
863
+
864
+ # create success & fail list
865
+ print(f"Success files written into {success_list_name}")
866
+ print(f"Fail files written into {fail_list_name}")
867
+ with open(success_list_name, "w") as f:
868
+ pass
869
+ with open(fail_list_name, "w") as f:
870
+ pass
871
+
872
+ pbar = tqdm(total=len(video_ids))
873
+ success_list = []
874
+ fail_list = []
875
+ (
876
+ pbar_lock,
877
+ success_lock,
878
+ fail_lock,
879
+ ) = (
880
+ Lock(),
881
+ Lock(),
882
+ Lock(),
883
+ )
884
+
885
+ def download_success(file_ids):
886
+ nonlocal pbar, success_list_name, success_list, success_list, pbar_lock
887
+ with pbar_lock:
888
+ pbar.update(1)
889
+ with success_lock:
890
+ for file_id in file_ids:
891
+ success_list.append(file_id)
892
+ with open(success_list_name, "a") as f:
893
+ f.write(f"{file_id}\n")
894
+
895
+ def download_fail(
896
+ error: DownloadError,
897
+ ):
898
+ nonlocal pbar, fail_list_name, fail_list, fail_lock, pbar_lock
899
+ with pbar_lock:
900
+ pbar.update(1)
901
+ if not isinstance(error, DownloadError):
902
+ print(f"[Error]: {error}")
903
+ raise error
904
+ file_ids = error.items
905
+ with fail_lock:
906
+ for file_id in file_ids:
907
+ fail_list.append(file_id)
908
+ with open(fail_list_name, "a") as f:
909
+ f.write(f"{file_id}\n")
910
+ print(f"Fail to download {file_id}: {error.result.stderr}")
911
+
912
+ # start downloading
913
+ if specify_start is None:
914
+
915
+ def arg_gen(video_ids):
916
+ for video_id in video_ids:
917
+ yield {
918
+ "video_id": video_id,
919
+ "output_folder": output_folder,
920
+ "proxy": proxy,
921
+ "cookie": cookie,
922
+ }
923
+
924
+ arg_iter = arg_gen(video_ids)
925
+ else:
926
+
927
+ def arg_gen(video_ids, start_times_list):
928
+ for video_id, start_times in zip(video_ids, start_times_list):
929
+ yield {
930
+ "video_id": video_id,
931
+ "start_times": start_times,
932
+ "output_folder": output_folder,
933
+ "proxy": proxy,
934
+ "time_interval": time_interval,
935
+ "cookie": cookie
936
+ }
937
+
938
+ arg_iter = arg_gen(video_ids, start_times_list)
939
+
940
+ # for arg in arg_iter:
941
+ # try:
942
+ # result = (download_video_process if specify_start is None else download_video_segments_process)(arg)
943
+ # download_success(result)
944
+ # except DownloadError as e:
945
+ # download_fail(e)
946
+
947
+ p = Pool(jobs)
948
+ for arg in arg_iter:
949
+ if specify_start is None:
950
+ p.apply_async(
951
+ download_360_process,
952
+ args=(arg,),
953
+ callback=download_success,
954
+ error_callback=download_fail,
955
+ )
956
+ else:
957
+ p.apply_async(
958
+ download_360_segments_process,
959
+ args=(arg,),
960
+ callback=download_success,
961
+ error_callback=download_fail,
962
+ )
963
+ p.close()
964
+ p.join()
965
+
966
+ print("Finished downloading.")
967
+
968
+ # output fail status
969
+ success_list.sort()
970
+ with open(success_list_name, "w") as f:
971
+ for item in success_list:
972
+ f.write(f"{item}\n")
973
+ print(
974
+ f"{len(success_list)} success files written into {success_list_name}."
975
+ )
976
+ fail_list.sort()
977
+ with open(fail_list_name, "w") as f:
978
+ for item in fail_list:
979
+ f.write(f"{item}\n")
980
+ print(f"{len(fail_list)} fail files written into {fail_list_name}.")
981
+
982
+ return success_list
983
+
984
+
985
+ if __name__ == "__main__":
986
+ import argparse
987
+ import pprint
988
+
989
+ parser = argparse.ArgumentParser()
990
+ parser.add_argument(
991
+ "-i",
992
+ "--input",
993
+ type=str,
994
+ required=True,
995
+ )
996
+ parser.add_argument(
997
+ "-o",
998
+ "--output",
999
+ type=str,
1000
+ default="downloads",
1001
+ )
1002
+ parser.add_argument(
1003
+ "-st",
1004
+ "--start-index",
1005
+ type=int,
1006
+ default=None,
1007
+ )
1008
+ parser.add_argument(
1009
+ "-ed",
1010
+ "--end-index",
1011
+ help="The next index of the last download item",
1012
+ type=int,
1013
+ default=None,
1014
+ )
1015
+ parser.add_argument(
1016
+ "-p",
1017
+ "--proxy",
1018
+ type=str,
1019
+ default=None,
1020
+ )
1021
+ parser.add_argument(
1022
+ "--fail-list-name",
1023
+ type=str,
1024
+ default="fail_list.txt",
1025
+ )
1026
+ parser.add_argument(
1027
+ "--success-list-name",
1028
+ type=str,
1029
+ default="success_list.txt",
1030
+ )
1031
+ parser.add_argument(
1032
+ "-j",
1033
+ "--jobs",
1034
+ type=int,
1035
+ default=1,
1036
+ help="Number of parallel jobs",
1037
+ )
1038
+ parser.add_argument(
1039
+ "--specify-start",
1040
+ type=str,
1041
+ default="multiple",
1042
+ choices=["single", "multiple", None],
1043
+ )
1044
+ parser.add_argument(
1045
+ "--time-interval",
1046
+ type=int,
1047
+ default=10,
1048
+ )
1049
+ args = parser.parse_args()
1050
+ input_file = args.input
1051
+ output_folder = args.output
1052
+ start_index = args.start_index
1053
+ end_index = args.end_index
1054
+ fail_list_name = args.fail_list_name
1055
+ success_list_name = args.success_list_name
1056
+ proxy = None if args.proxy is None else args.proxy.strip()
1057
+ jobs = args.jobs
1058
+ specify_start = args.specify_start
1059
+ time_interval = args.time_interval
1060
+ print(f"Using arguments:\n{pprint.pformat(vars(args))}")
1061
+
1062
+ download_list_360(
1063
+ input_file=input_file,
1064
+ output_folder=output_folder,
1065
+ start_index=start_index,
1066
+ end_index=end_index,
1067
+ proxy=proxy,
1068
+ fail_list_name=fail_list_name,
1069
+ success_list_name=success_list_name,
1070
+ jobs=jobs,
1071
+ specify_start=specify_start,
1072
+ time_interval=time_interval,
1073
+ )
toolset/crawl/core/filelist.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import os
3
+
4
+ def get_channel_ids(input_file: str):
5
+ channel_ids = []
6
+ if input_file.endswith(".csv"): # CSV file
7
+ with open(input_file, "r") as file:
8
+ csvreader = csv.DictReader(file)
9
+ for row in csvreader:
10
+ channel_ids.append(row["channel_id"])
11
+ else: # Default format
12
+ with open(input_file, "r") as file:
13
+ lines = file.readlines()
14
+ for line in lines:
15
+ channel_ids.append(line.strip())
16
+
17
+ return channel_ids
18
+
19
+ def get_video_ids(input_file: str):
20
+ video_ids = []
21
+ if input_file.endswith(".csv"): # CSV file
22
+ with open(input_file, "r") as file:
23
+ csvreader = csv.DictReader(file)
24
+ for row in csvreader:
25
+ video_ids.append(row["video_id"])
26
+ else: # Default format
27
+ with open(input_file, "r") as file:
28
+ lines = file.readlines()
29
+ for line in lines:
30
+ video_ids.append(line.strip())
31
+
32
+ return video_ids
33
+
34
+ def get_file_ids(input_file: str):
35
+ file_ids = []
36
+ if input_file.endswith(".csv"): # CSV file
37
+ with open(input_file, "r") as file:
38
+ csvreader = csv.reader(file)
39
+ # skip header
40
+ next(csvreader)
41
+ for row in csvreader:
42
+ file_ids.append(row[0])
43
+ else: # Default format
44
+ with open(input_file, "r") as file:
45
+ lines = file.readlines()
46
+ for line in lines:
47
+ file_ids.append(line.strip())
48
+
49
+ return file_ids
50
+
51
+ def get_video_ids_and_start_times(input_file: str):
52
+ video_ids = []
53
+ start_times = []
54
+ lines = []
55
+ if input_file.endswith(".csv"): # CSV file
56
+ with open(input_file, "r") as file:
57
+ csvreader = csv.DictReader(file)
58
+ for row in csvreader:
59
+ lines.append(row["file_id"])
60
+ else: # Default format
61
+ with open(input_file, "r") as file:
62
+ lines = file.readlines()
63
+
64
+ for line in lines:
65
+ parts = line.rsplit("_", 1)
66
+ if len(parts) != 2:
67
+ continue
68
+ video_ids.append(parts[0])
69
+ start_times.append(int(parts[1]))
70
+
71
+ return video_ids, start_times
72
+
73
+ def get_video_ids_and_start_times_list(input_file: str):
74
+ video_data = {} # Dictionary to store video_id and corresponding start_times_list
75
+
76
+ with open(input_file, "r") as file:
77
+ lines = file.readlines()
78
+
79
+ for line in lines:
80
+ parts = line.strip().split()
81
+ if len(parts) != 2:
82
+ continue
83
+
84
+ video_id = parts[0]
85
+ start_times = parts[1].split(",")
86
+ start_times_list = [int(t) for t in start_times if t.isdigit()]
87
+
88
+ # Merge start_times_list for same video_id
89
+ if video_id in video_data:
90
+ video_data[video_id].extend(start_times_list)
91
+ else:
92
+ video_data[video_id] = start_times_list
93
+
94
+ # Deduplicate and sort start_times_list for each video_id
95
+ for video_id in video_data:
96
+ video_data[video_id] = sorted(set(video_data[video_id]))
97
+
98
+ # Separate results into two lists
99
+ file_ids = list(video_data.keys())
100
+ start_times_list = list(video_data.values())
101
+
102
+ return file_ids, start_times_list
103
+
104
+ def get_video_ids_from_dir(input_dir: str, ext: str):
105
+ """
106
+ Extract video IDs from filenames in the specified directory.
107
+
108
+ Args:
109
+ input_dir: Directory containing the files
110
+ ext: File extension to filter by (e.g., 'mp4')
111
+
112
+ Returns:
113
+ List of video IDs extracted from filenames
114
+ """
115
+ if not ext.startswith("."):
116
+ ext = "." + ext
117
+ video_ids = []
118
+ for file in os.listdir(input_dir):
119
+ if file.endswith(ext):
120
+ video_ids.append(file.split(".")[0])
121
+ return video_ids
122
+
123
+ def get_video_ids_from_dir_and_start_times(input_dir: str, ext: str):
124
+ """
125
+ Extract video IDs and start times from filenames in the specified directory.
126
+
127
+ Args:
128
+ input_dir: Directory containing the files
129
+ ext: File extension to filter by (e.g., 'mp4')
130
+
131
+ Returns:
132
+ Tuple of (video_ids, start_times) extracted from filenames
133
+ """
134
+ if not ext.startswith("."):
135
+ ext = "." + ext
136
+ video_ids = []
137
+ start_times = []
138
+ for file in os.listdir(input_dir):
139
+ if file.endswith(ext):
140
+ parts = file.split(".")[0].rsplit("_", 1)
141
+ if len(parts) != 2:
142
+ continue
143
+ video_ids.append(parts[0])
144
+ start_times.append(int(parts[1]))
145
+ return video_ids, start_times
146
+
147
+ def get_file_ids_from_dir(input_dir: str, ext: str):
148
+ """
149
+ Extract file IDs from filenames in the specified directory.
150
+
151
+ Args:
152
+ input_dir: Directory containing the files
153
+ ext: File extension to filter by (e.g., 'mp4')
154
+
155
+ Returns:
156
+ List of file IDs extracted from filenames
157
+ """
158
+ if not ext.startswith("."):
159
+ ext = "." + ext
160
+ file_ids = []
161
+ for file in os.listdir(input_dir):
162
+ if file.endswith(ext):
163
+ file_ids.append(file.split(".")[0])
164
+ return file_ids
toolset/crawl/core/filters/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .ytfilter import filter_360
2
+ from . import filefilter, ytfilter
toolset/crawl/core/filters/filefilter.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import subprocess
3
+ from tqdm import tqdm
4
+
5
+
6
+ def filter_list(video_ids, filter_ids, block=False):
7
+ """
8
+ Filter video IDs from a list based on specified criteria
9
+
10
+ :param video_ids: List containing video IDs to be filtered
11
+ :param filter_ids: List of video IDs to use as filter
12
+ :param block: If True, excludes specified video IDs. If False, includes only specified video IDs
13
+ :return: Filtered list of video IDs
14
+ """
15
+ filter_ids = set(filter_ids)
16
+ if block:
17
+ return [vid for vid in video_ids if vid not in filter_ids]
18
+ else:
19
+ return [vid for vid in video_ids if vid in filter_ids]
20
+
21
+
22
+ def filter_size(file_dir, file_ids, ext, size_limit=1024, filter_less=True):
23
+ """
24
+ Filter files in a directory based on file size
25
+
26
+ :param file_dir: Directory path containing files
27
+ :param file_ids: List of file IDs to check
28
+ :param ext: File extension (e.g. '.mp4', '.avi')
29
+ :param size_limit: Size threshold in bytes
30
+ :param filter_less: If True, keeps files >= size_limit. If False, keeps files < size_limit
31
+ :return: List of file IDs that meet the size criteria
32
+ """
33
+ if not ext.endswith("."):
34
+ ext = "." + ext
35
+ output_file_ids = []
36
+ for file_id in file_ids:
37
+ file_path = os.path.join(file_dir, file_id + ext)
38
+ if not os.path.exists(file_path):
39
+ continue
40
+ file_size = os.path.getsize(file_path)
41
+ if filter_less and file_size >= size_limit:
42
+ output_file_ids.append(file_id)
43
+ elif not filter_less and file_size < size_limit:
44
+ output_file_ids.append(file_id)
45
+ return output_file_ids
46
+
47
+
48
+ def filter_audio_channels(file_dir, file_ids, ext, num_channels):
49
+ """
50
+ Filter files based on number of audio channels using ffmpeg
51
+
52
+ :param file_dir: Directory containing files
53
+ :param file_ids: List of file IDs to check
54
+ :param ext: File extension (e.g. '.mp3', '.wav')
55
+ :param num_channels: Target number of audio channels
56
+ :return: List of file IDs matching the channel count criteria
57
+ """
58
+ if not ext.startswith("."):
59
+ ext = "." + ext
60
+
61
+ matching_files = []
62
+
63
+ for file_id in tqdm(file_ids):
64
+ # Construct full file path
65
+ file_path = os.path.join(file_dir, f"{file_id}{ext}")
66
+
67
+ # Verify file exists
68
+ if not os.path.exists(file_path):
69
+ print(f"File not found: {file_path}")
70
+ continue
71
+
72
+ try:
73
+ # Use ffprobe to check audio channel count
74
+ cmd = [
75
+ "ffprobe",
76
+ "-v",
77
+ "error", # Suppress verbose output
78
+ "-select_streams",
79
+ "a:0", # Select first audio stream
80
+ "-show_entries",
81
+ "stream=channels", # Get channel count
82
+ "-of",
83
+ "csv=p=0", # Format output
84
+ file_path,
85
+ ]
86
+ result = subprocess.run(
87
+ cmd, capture_output=True, text=True, check=True
88
+ )
89
+
90
+ # Get channel count
91
+ channels = int(result.stdout.strip())
92
+ if channels == num_channels:
93
+ matching_files.append(file_id)
94
+ except subprocess.CalledProcessError as e:
95
+ print(f"Error processing file {file_path}: {e}")
96
+ except ValueError as e:
97
+ print(f"Invalid channel count for file {file_path}: {e}")
98
+
99
+ return matching_files
toolset/crawl/core/filters/ytfilter.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+
3
+ def filter_360(youtube, video_ids, output_tmp=False):
4
+ """
5
+ Filters and returns only 360-degree video IDs from the input list
6
+
7
+ :param youtube: Initialized YouTube API client object
8
+ :param video_ids: List of video IDs to filter
9
+ :param output_tmp: If True, saves intermediate results to temporary files
10
+ :return: List containing only 360-degree video IDs
11
+ """
12
+ vr_video_ids = [] # List to store 360-degree video IDs
13
+
14
+ # Process videos in batches of 50 (YouTube API limit)
15
+ for i in range(0, len(video_ids), 50):
16
+ batch_video_ids = video_ids[i:i + 50] # Get current batch of 50 video IDs
17
+
18
+ # Request video details in batch
19
+ request = youtube.videos().list(
20
+ part="contentDetails",
21
+ id=",".join(batch_video_ids), # Comma-separated video IDs
22
+ )
23
+ response = request.execute()
24
+
25
+ # Optionally save intermediate results
26
+ if output_tmp:
27
+ with open(f"tmp/get_video_detail_{i // 50}.json", "w", encoding="utf-8") as f:
28
+ json.dump(response, f, indent=2)
29
+
30
+ # Check projection type for each video
31
+ for item in response.get("items", []):
32
+ if item["contentDetails"].get("projection", "") == "360":
33
+ vr_video_ids.append(item["id"])
34
+
35
+ return vr_video_ids
36
+
37
+
38
+ # Test function
39
+ if __name__ == "__main__":
40
+ from build import build_youtube
41
+
42
+ # Initialize YouTube API client
43
+ youtube = build_youtube()
44
+
45
+ # Test video IDs (mix of regular and 360 videos)
46
+ test_video_ids = [ # example videos
47
+ "spYqJw3WpCI",
48
+ "8AEhFvFMwBo",
49
+ "XToK00VcBI8",
50
+ ]
51
+
52
+ # Filter 360 videos
53
+ vr_videos = filter_360(youtube, test_video_ids, output_tmp=True)
54
+
55
+ # Print results
56
+ print("\n360-degree Video IDs:")
57
+ for vid in vr_videos:
58
+ print(f"- {vid}")
toolset/crawl/core/search.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+
4
+ def search_videos(
5
+ youtube_client,
6
+ query,
7
+ num_pages=1,
8
+ max_results_per_page=50,
9
+ output_tmp=False,
10
+ use_cache=False,
11
+ tmp_path=None,
12
+ ):
13
+ """
14
+ Search videos using YouTube API and return video IDs, titles and other metadata
15
+
16
+ :param youtube_client: Initialized YouTube API client object
17
+ :param query: Search query keywords
18
+ :param num_pages: Number of result pages to fetch
19
+ :param max_results_per_page: Maximum results per page
20
+ :return: List of dictionaries containing video IDs, titles and other metadata
21
+ """
22
+ if output_tmp or use_cache:
23
+ if tmp_path is None:
24
+ tmp_path = "tmp"
25
+ if output_tmp:
26
+ os.makedirs(tmp_path, exist_ok=True)
27
+
28
+ if tmp_path is not None:
29
+ tmp_path = os.path.join(tmp_path, "search")
30
+ os.makedirs(tmp_path, exist_ok=True)
31
+
32
+ video_info_list = [] # Store search results
33
+ next_page_token = None # Initialize pageToken for next page
34
+
35
+ for i in range(num_pages):
36
+ # Try reading from cache
37
+ if use_cache:
38
+ try:
39
+ with open(os.path.join(tmp_path, f"search_{i}.json"), "r", encoding="utf-8") as f:
40
+ search_response = json.load(f)
41
+ print(f"Using cache {os.path.join(tmp_path, f'search_{i}.json')}")
42
+ except FileNotFoundError:
43
+ search_response = None
44
+
45
+ if search_response is None:
46
+ # Execute video search
47
+ search_request = youtube_client.search().list(
48
+ part="snippet",
49
+ q=query,
50
+ type="video", # Only return videos
51
+ maxResults=max_results_per_page, # Results per page
52
+ pageToken=next_page_token, # pageToken from previous page (None for first request)
53
+ )
54
+ search_response = search_request.execute()
55
+
56
+ # Parse response to get video IDs, titles and metadata
57
+ for item in search_response["items"]:
58
+ video_info = {
59
+ "video_id": item["id"]["videoId"],
60
+ "title": item["snippet"]["title"],
61
+ "channel_id": item["snippet"]["channelId"],
62
+ "channel_title": item["snippet"]["channelTitle"],
63
+ "description": item["snippet"]["description"],
64
+ "publish_time": item["snippet"]["publishedAt"],
65
+ }
66
+ video_info_list.append(video_info)
67
+
68
+ if output_tmp:
69
+ with open(os.path.join(tmp_path, f"search_{i}.json"), "w", encoding="utf-8") as f:
70
+ f.write(json.dumps(search_response, indent=2))
71
+
72
+ # Get next page token
73
+ next_page_token = search_response.get("nextPageToken")
74
+
75
+ # Exit early if no more pages
76
+ if not next_page_token:
77
+ break
78
+
79
+ video_ids = [video["video_id"] for video in video_info_list]
80
+ return video_ids, video_info_list
81
+
82
+
83
+ def search_videos_360(
84
+ youtube, query, num_pages=1, max_results_per_page=50, output_tmp=False, use_cache=False, tmp_path=None
85
+ ):
86
+ """
87
+ Search for 360-degree videos using YouTube API
88
+
89
+ :param youtube: Initialized YouTube API client object
90
+ :param query: Search query keywords
91
+ :param num_pages: Number of result pages to fetch
92
+ :param max_results_per_page: Maximum results per page
93
+ :return: List of 360-degree video IDs
94
+ """
95
+ from .filters import filter_360
96
+
97
+ video_ids, video_info_list = search_videos(
98
+ youtube, query, num_pages, max_results_per_page, output_tmp, use_cache, tmp_path
99
+ )
100
+
101
+ video_ids = filter_360(youtube, video_ids, False)
102
+
103
+ # Filter info
104
+ video_info_dict = {
105
+ video["video_id"]: video for video in video_info_list
106
+ }
107
+ video_info_list = []
108
+ for video_id in video_ids:
109
+ video_info_list.append(video_info_dict[video_id])
110
+
111
+ return video_ids, video_info_list
112
+
113
+
114
+ if __name__ == "__main__":
115
+ import argparse
116
+
117
+ parser = argparse.ArgumentParser()
118
+ parser.add_argument(
119
+ "-k",
120
+ "--key",
121
+ type=str,
122
+ help="Search query",
123
+ default="Spatial Audio 360",
124
+ )
125
+ parser.add_argument(
126
+ "--num-pages",
127
+ type=int,
128
+ help="Number of pages to search",
129
+ default=2,
130
+ )
131
+ parser.add_argument(
132
+ "--max-results",
133
+ type=int,
134
+ help="Max results per page",
135
+ default=50,
136
+ )
137
+ args = parser.parse_args()
138
+ query = args.key
139
+ num_pages = args.num_pages
140
+ max_results_per_page = args.max_results
141
+ from build import build_youtube
142
+
143
+ youtube = build_youtube()
144
+
145
+ video_ids, video_info_list = search_videos_360(
146
+ youtube, query, num_pages, max_results_per_page, True
147
+ )
148
+
149
+ # Output results
150
+ for video_id in video_ids:
151
+ print(video_id)
152
+ for video_info in video_info_list:
153
+ print(str(video_info))
toolset/crawl/download/download_list.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ sys.path.append("..")
3
+ import core
4
+ from core import download
5
+
6
+ if __name__ == "__main__":
7
+ import argparse
8
+ parser = argparse.ArgumentParser()
9
+ parser.add_argument(
10
+ "-i", "--input-csv", type=str, required=True
11
+ )
12
+ parser.add_argument(
13
+ "-o", "--output-dir", type=str, required=True, help="Output directory"
14
+ )
15
+ parser.add_argument(
16
+ "-j", "--jobs", type=int, default=8, help="Number of jobs"
17
+ )
18
+ args = parser.parse_args()
19
+ input_csv = args.input_csv
20
+ output_dir = args.output_dir
21
+ jobs = args.jobs
22
+
23
+ download.download_list.download_list_360(
24
+ input_file = input_csv,
25
+ output_folder = output_dir,
26
+ jobs = jobs
27
+ )
toolset/crawl/download/download_list.sh ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ input_csv="" # input video ids
4
+ output_dir="" # output directory
5
+ jobs=8 # number of jobs
6
+ log_name="download.log" # log file name
7
+
8
+ python download_list.py \
9
+ -i "${input_csv}" \
10
+ -o "${output_dir}" \
11
+ -j ${jobs} \
12
+ > ${log_name}
toolset/crawl/filter/filter_exist.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import csv
3
+ from tqdm import tqdm
4
+
5
+ # black-list database paths
6
+ # items within the video database or channel database will be filtered out
7
+ video_db_path = '' # Path to video_id database file
8
+ channel_db_path = '' # Path to channel_id database file
9
+
10
+ # Path to folder containing search results for filtering
11
+ folder_path = '' # Replace with actual folder path
12
+ output_csv = '' # Replace with actual output filename
13
+
14
+ def read_db(file_path, key_column):
15
+ """Read values from a database CSV file"""
16
+ values = set()
17
+ with open(file_path, mode='r', newline='', encoding='utf-8') as f:
18
+ reader = csv.DictReader(f)
19
+ for row in reader:
20
+ values.add(row[key_column]) # Get values from specified column
21
+ return values
22
+
23
+ def process_csv_files(folder_path, video_db, channel_db):
24
+ """Process all CSV files in the folder and filter results"""
25
+ result = set() # Stores final video_id results
26
+ before_filter = set() # Stores video_id results before filtering
27
+ for file_name in tqdm(os.listdir(folder_path)):
28
+ if file_name.endswith('.csv'):
29
+ file_path = os.path.join(folder_path, file_name)
30
+ with open(file_path, mode='r', newline='', encoding='utf-8') as f:
31
+ reader = csv.DictReader(f)
32
+ for row in reader:
33
+ video_id = row['video_id']
34
+ channel_id = row['channel_id']
35
+ before_filter.add(video_id)
36
+ # Check if video_id and channel_id exist in databases
37
+ if video_id not in video_db and channel_id not in channel_db:
38
+ result.add(video_id) # Add to results if not in databases
39
+ return result, before_filter
40
+
41
+ def main():
42
+ # Read databases
43
+ video_db = read_db(video_db_path, 'video_id')
44
+ channel_db = read_db(channel_db_path, 'channel_id')
45
+
46
+ print(f"Video DB: {video_db_path} ({len(video_db)} records)")
47
+ print(f"Channel DB: {channel_db_path} ({len(channel_db)} records)")
48
+
49
+ # Process CSV files in folder
50
+ result, before_filter = process_csv_files(folder_path, video_db, channel_db)
51
+
52
+ # Output final results
53
+ print(f"Number of video_id: {len(result)}/{len(before_filter)}")
54
+
55
+ # Write pre-filter results
56
+ with open(f"before_filter_{output_csv}", mode='w', newline='', encoding='utf-8') as f:
57
+ dict_writer = csv.DictWriter(f, fieldnames=['video_id'])
58
+ dict_writer.writeheader()
59
+ for video_id in before_filter:
60
+ dict_writer.writerow({'video_id': video_id})
61
+ print(f"Before filter results saved to: before_filter_{output_csv}")
62
+
63
+ # Write final filtered results
64
+ with open(output_csv, mode='w', newline='', encoding='utf-8') as f:
65
+ dict_writer = csv.DictWriter(f, fieldnames=['video_id'])
66
+ dict_writer.writeheader()
67
+ for video_id in result:
68
+ dict_writer.writerow({'video_id': video_id})
69
+ print(f"Filtered results saved to: {output_csv}")
70
+
71
+ if __name__ == "__main__":
72
+ main()
toolset/crawl/requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ google_api_python_client==2.155.0
2
+ httplib2==0.22.0
3
+ pandas==2.2.3
4
+ Requests==2.32.3
5
+ tqdm==4.67.1
toolset/crawl/search/search.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from tqdm import tqdm
2
+ import json
3
+ import os
4
+ import csv
5
+ import sys
6
+ sys.path.append('..')
7
+ from core import search, build
8
+
9
+ def output_to_csv(video_info_list, output_file):
10
+ os.makedirs(os.path.dirname(output_file), exist_ok=True)
11
+ with open(output_file, 'w') as f:
12
+ if len(video_info_list) == 0:
13
+ return
14
+ dict_writer = csv.DictWriter(f, fieldnames=video_info_list[0].keys())
15
+ dict_writer.writeheader()
16
+ for video_info in video_info_list:
17
+ dict_writer.writerow(video_info)
18
+
19
+ if __name__ == "__main__":
20
+ import argparse
21
+ parser = argparse.ArgumentParser()
22
+ parser.add_argument('-i', '--input', type=str, required=True, help='Input file with keywords')
23
+ parser.add_argument('-o', '--output', type=str, required=True)
24
+ parser.add_argument('-n', '--num-pages', type=int, default=1)
25
+ parser.add_argument('-p', '--postfix', type=str, default=None)
26
+ parser.add_argument('-t', '--tmp-path', type=str)
27
+ args = parser.parse_args()
28
+ output = args.output
29
+ num_pages = args.num_pages
30
+ tmp_path = args.tmp_path
31
+
32
+ with open(args.input, 'r') as f:
33
+ keywords = f.readlines()
34
+ keywords = [keyword.strip() for keyword in keywords]
35
+
36
+ print(f'Searching for {len(keywords)} keywords')
37
+
38
+ youtube = build.build_youtube()
39
+
40
+ pbar = tqdm(keywords)
41
+ for keyword in pbar:
42
+ if args.postfix:
43
+ keyword += args.postfix
44
+ pbar.set_description(f'{keyword}')
45
+
46
+ out_path = os.path.join(output, f'{keyword}.csv')
47
+ if os.path.exists(out_path):
48
+ print(f"Skip {keyword}")
49
+ continue
50
+
51
+ video_ids, video_info_list = search.search_videos_360(
52
+ youtube, keyword, num_pages, 50, True, True, os.path.join(tmp_path, f'{keyword}')
53
+ )
54
+ out_path = os.path.join(output, f'{keyword}.csv')
55
+ output_to_csv(video_info_list, out_path)
56
+
57
+ print(f'Finished searching for {len(keywords)} keywords')
toolset/crawl/search/search.sh ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ num_pages=1 # Number of search pages (max 50 results per page)
3
+
4
+ keyword_file='' # Keyword file
5
+ postfix=" spatial audio 360" # Keyword suffix, e.g., "spatial audio 360"
6
+ tmp_dir="tmp/" # Temporary folder for search results
7
+ output_dir="search_result/" # Final output folder for all search results
8
+
9
+ log_file="search.log" # Log file
10
+
11
+ # Search and output initial results
12
+ python search.py \
13
+ -i "$keyword_file" \
14
+ -o "$output_dir" \
15
+ -n "$num_pages" \
16
+ -p "$postfix" \
17
+ -t "$tmp_dir" \
18
+ --aid-id "$aid_id" \
19
+ > $log_file