prithivMLmods commited on
Commit
708bd0e
·
verified ·
1 Parent(s): afb99ee

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -1
README.md CHANGED
@@ -13,4 +13,77 @@ tags:
13
  - Net
14
  size_categories:
15
  - 10K<n<100K
16
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  - Net
14
  size_categories:
15
  - 10K<n<100K
16
+ ---
17
+ # **IndoorOutdoorNet-20K**
18
+
19
+ **IndoorOutdoorNet-20K** is a labeled image dataset designed for the task of **image classification**, particularly focused on distinguishing between **indoor** and **outdoor** scenes. The dataset is publicly available on [Hugging Face Datasets](https://huggingface.co/datasets/prithivMLmods/IndoorOutdoorNet-20K) and is useful for scene understanding, transfer learning, and model benchmarking.
20
+
21
+ ## Dataset Summary
22
+
23
+ - **Task**: Image Classification
24
+ - **Modalities**: Image
25
+ - **Labels**: Indoor, Outdoor (2 classes)
26
+ - **Total Images**: 19,998
27
+ - **Split**: Train (100%)
28
+ - **Languages**: English (metadata)
29
+ - **Size**: ~451 MB
30
+ - **License**: Apache-2.0
31
+
32
+ ## Features
33
+
34
+ | Column | Type | Description |
35
+ |--------|--------|---------------------------------|
36
+ | image | Image | Input image file |
37
+ | label | Class | Scene label: `Indoor` or `Outdoor` |
38
+
39
+ ## Example
40
+
41
+ | Image | Label |
42
+ |------------------------------|---------|
43
+ | ![](image_sample1.png) | Indoor |
44
+ | ![](image_sample2.png) | Outdoor |
45
+
46
+ > Note: For full visualization, visit the dataset viewer on Hugging Face.
47
+
48
+ ## Usage
49
+
50
+ You can use this dataset directly with the `datasets` library:
51
+
52
+ ```python
53
+ from datasets import load_dataset
54
+
55
+ dataset = load_dataset("prithivMLmods/IndoorOutdoorNet-20K")
56
+ ```
57
+
58
+ To visualize a sample:
59
+
60
+ ```python
61
+ import matplotlib.pyplot as plt
62
+
63
+ sample = dataset['train'][0]
64
+ plt.imshow(sample['image'])
65
+ plt.title(sample['label'])
66
+ plt.axis('off')
67
+ plt.show()
68
+ ```
69
+
70
+ ## Applications
71
+
72
+ - Scene classification
73
+ - Image context recognition
74
+ - Smart surveillance
75
+ - Autonomous navigation
76
+ - Indoor-outdoor transition detection in robotics
77
+
78
+ ## Citation
79
+
80
+ If you use this dataset in your research or project, please cite it appropriately. (You can include a BibTeX entry here if available.)
81
+
82
+ ## License
83
+
84
+ This dataset is licensed under the Apache 2.0 License.
85
+
86
+ ---
87
+
88
+ *Maintained by [@prithivMLmods](https://huggingface.co/prithivMLmods).*
89
+ ```