File size: 10,651 Bytes
f443c5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
{
  "cells": [
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "xL8y37Y6bORU"
      },
      "outputs": [],
      "source": [
        "%%capture\n",
        "!pip install gradio spaces transformers accelerate numpy requests\n",
        "!pip install torch torchvision qwen-vl-utils av hf_xet\n",
        "!pip install pillow huggingface_hub opencv-python"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Y-NTbL1tdL9X"
      },
      "outputs": [],
      "source": [
        "import os\n",
        "import random\n",
        "import uuid\n",
        "import json\n",
        "import time\n",
        "import asyncio\n",
        "from threading import Thread\n",
        "\n",
        "import gradio as gr\n",
        "import spaces\n",
        "import torch\n",
        "import numpy as np\n",
        "from PIL import Image\n",
        "import cv2\n",
        "\n",
        "from transformers import (\n",
        "    Qwen2_5_VLForConditionalGeneration,\n",
        "    AutoProcessor,\n",
        "    TextIteratorStreamer,\n",
        ")\n",
        "from transformers.image_utils import load_image\n",
        "\n",
        "# Constants for text generation\n",
        "MAX_MAX_NEW_TOKENS = 2048\n",
        "DEFAULT_MAX_NEW_TOKENS = 1024\n",
        "# Increase or disable input truncation to avoid token mismatches\n",
        "MAX_INPUT_TOKEN_LENGTH = int(os.getenv(\"MAX_INPUT_TOKEN_LENGTH\", \"8192\"))\n",
        "\n",
        "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
        "\n",
        "MODEL_ID = \"scb10x/typhoon-ocr-7b\"\n",
        "processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)\n",
        "model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(\n",
        "    MODEL_ID,\n",
        "    trust_remote_code=True,\n",
        "    torch_dtype=torch.float16\n",
        ").to(\"cuda\").eval()\n",
        "\n",
        "def downsample_video(video_path):\n",
        "    \"\"\"\n",
        "    Downsamples the video to evenly spaced frames.\n",
        "    Each frame is returned as a PIL image along with its timestamp.\n",
        "    \"\"\"\n",
        "    vidcap = cv2.VideoCapture(video_path)\n",
        "    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))\n",
        "    fps = vidcap.get(cv2.CAP_PROP_FPS)\n",
        "    frames = []\n",
        "    # Sample 10 evenly spaced frames.\n",
        "    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)\n",
        "    for i in frame_indices:\n",
        "        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)\n",
        "        success, image = vidcap.read()\n",
        "        if success:\n",
        "            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)  # Convert BGR to RGB\n",
        "            pil_image = Image.fromarray(image)\n",
        "            timestamp = round(i / fps, 2)\n",
        "            frames.append((pil_image, timestamp))\n",
        "    vidcap.release()\n",
        "    return frames\n",
        "\n",
        "@spaces.GPU\n",
        "def generate_image(text: str, image: Image.Image,\n",
        "                   max_new_tokens: int = 1024,\n",
        "                   temperature: float = 0.6,\n",
        "                   top_p: float = 0.9,\n",
        "                   top_k: int = 50,\n",
        "                   repetition_penalty: float = 1.2):\n",
        "\n",
        "    if image is None:\n",
        "        yield \"Please upload an image.\"\n",
        "        return\n",
        "\n",
        "    messages = [{\n",
        "        \"role\": \"user\",\n",
        "        \"content\": [\n",
        "            {\"type\": \"image\", \"image\": image},\n",
        "            {\"type\": \"text\", \"text\": text},\n",
        "        ]\n",
        "    }]\n",
        "    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)\n",
        "    inputs = processor(\n",
        "        text=[prompt_full],\n",
        "        images=[image],\n",
        "        return_tensors=\"pt\",\n",
        "        padding=True,\n",
        "        truncation=False,\n",
        "        max_length=MAX_INPUT_TOKEN_LENGTH\n",
        "    ).to(\"cuda\")\n",
        "    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)\n",
        "    generation_kwargs = {**inputs, \"streamer\": streamer, \"max_new_tokens\": max_new_tokens}\n",
        "    thread = Thread(target=model_m.generate, kwargs=generation_kwargs)\n",
        "    thread.start()\n",
        "    buffer = \"\"\n",
        "    for new_text in streamer:\n",
        "        buffer += new_text\n",
        "        buffer = buffer.replace(\"<|im_end|>\", \"\")\n",
        "        time.sleep(0.01)\n",
        "        yield buffer\n",
        "\n",
        "@spaces.GPU\n",
        "def generate_video(text: str, video_path: str,\n",
        "                   max_new_tokens: int = 1024,\n",
        "                   temperature: float = 0.6,\n",
        "                   top_p: float = 0.9,\n",
        "                   top_k: int = 50,\n",
        "                   repetition_penalty: float = 1.2):\n",
        "\n",
        "    if video_path is None:\n",
        "        yield \"Please upload a video.\"\n",
        "        return\n",
        "\n",
        "    frames = downsample_video(video_path)\n",
        "    messages = [\n",
        "        {\"role\": \"system\", \"content\": [{\"type\": \"text\", \"text\": \"You are a helpful assistant.\"}]},\n",
        "        {\"role\": \"user\", \"content\": [{\"type\": \"text\", \"text\": text}]}\n",
        "    ]\n",
        "    # Append each frame with its timestamp.\n",
        "    for frame in frames:\n",
        "        image, timestamp = frame\n",
        "        messages[1][\"content\"].append({\"type\": \"text\", \"text\": f\"Frame {timestamp}:\"})\n",
        "        messages[1][\"content\"].append({\"type\": \"image\", \"image\": image})\n",
        "    inputs = processor.apply_chat_template(\n",
        "        messages,\n",
        "        tokenize=True,\n",
        "        add_generation_prompt=True,\n",
        "        return_dict=True,\n",
        "        return_tensors=\"pt\",\n",
        "        truncation=False,\n",
        "        max_length=MAX_INPUT_TOKEN_LENGTH\n",
        "    ).to(\"cuda\")\n",
        "    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)\n",
        "    generation_kwargs = {\n",
        "        **inputs,\n",
        "        \"streamer\": streamer,\n",
        "        \"max_new_tokens\": max_new_tokens,\n",
        "        \"do_sample\": True,\n",
        "        \"temperature\": temperature,\n",
        "        \"top_p\": top_p,\n",
        "        \"top_k\": top_k,\n",
        "        \"repetition_penalty\": repetition_penalty,\n",
        "    }\n",
        "    thread = Thread(target=model_m.generate, kwargs=generation_kwargs)\n",
        "    thread.start()\n",
        "    buffer = \"\"\n",
        "    for new_text in streamer:\n",
        "        buffer += new_text\n",
        "        buffer = buffer.replace(\"<|im_end|>\", \"\")\n",
        "        time.sleep(0.01)\n",
        "        yield buffer\n",
        "\n",
        "css = \"\"\"\n",
        ".submit-btn {\n",
        "    background-color: #2980b9 !important;\n",
        "    color: white !important;\n",
        "}\n",
        ".submit-btn:hover {\n",
        "    background-color: #3498db !important;\n",
        "}\n",
        "\"\"\"\n",
        "\n",
        "# Create the Gradio Interface\n",
        "with gr.Blocks(css=css, theme=\"bethecloud/storj_theme\") as demo:\n",
        "    gr.Markdown(\"# **typhoon-ocr-7b**\")\n",
        "    with gr.Row():\n",
        "        with gr.Column():\n",
        "            with gr.Tabs():\n",
        "                with gr.TabItem(\"Image Inference\"):\n",
        "                    image_query = gr.Textbox(label=\"Query Input\", placeholder=\"Enter your query here...\")\n",
        "                    image_upload = gr.Image(type=\"pil\", label=\"Image\")\n",
        "                    image_submit = gr.Button(\"Submit\", elem_classes=\"submit-btn\")\n",
        "\n",
        "                with gr.TabItem(\"Video Inference\"):\n",
        "                    video_query = gr.Textbox(label=\"Query Input\", placeholder=\"Enter your query here...\")\n",
        "                    video_upload = gr.Video(label=\"Video\")\n",
        "                    video_submit = gr.Button(\"Submit\", elem_classes=\"submit-btn\")\n",
        "\n",
        "            with gr.Accordion(\"Advanced options\", open=False):\n",
        "                max_new_tokens = gr.Slider(label=\"Max new tokens\", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)\n",
        "                temperature = gr.Slider(label=\"Temperature\", minimum=0.1, maximum=4.0, step=0.1, value=0.6)\n",
        "                top_p = gr.Slider(label=\"Top-p (nucleus sampling)\", minimum=0.05, maximum=1.0, step=0.05, value=0.9)\n",
        "                top_k = gr.Slider(label=\"Top-k\", minimum=1, maximum=1000, step=1, value=50)\n",
        "                repetition_penalty = gr.Slider(label=\"Repetition penalty\", minimum=1.0, maximum=2.0, step=0.05, value=1.2)\n",
        "        with gr.Column():\n",
        "            output = gr.Textbox(label=\"Output\", interactive=False)\n",
        "\n",
        "    image_submit.click(\n",
        "        fn=generate_image,\n",
        "        inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],\n",
        "        outputs=output\n",
        "    )\n",
        "    video_submit.click(\n",
        "        fn=generate_video,\n",
        "        inputs=[video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],\n",
        "        outputs=output\n",
        "    )\n",
        "\n",
        "if __name__ == \"__main__\":\n",
        "    demo.queue(max_size=30).launch(share=True, ssr_mode=False, show_error=True)"
      ]
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "gpuType": "T4",
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}