File size: 10,651 Bytes
f443c5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "xL8y37Y6bORU"
},
"outputs": [],
"source": [
"%%capture\n",
"!pip install gradio spaces transformers accelerate numpy requests\n",
"!pip install torch torchvision qwen-vl-utils av hf_xet\n",
"!pip install pillow huggingface_hub opencv-python"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Y-NTbL1tdL9X"
},
"outputs": [],
"source": [
"import os\n",
"import random\n",
"import uuid\n",
"import json\n",
"import time\n",
"import asyncio\n",
"from threading import Thread\n",
"\n",
"import gradio as gr\n",
"import spaces\n",
"import torch\n",
"import numpy as np\n",
"from PIL import Image\n",
"import cv2\n",
"\n",
"from transformers import (\n",
" Qwen2_5_VLForConditionalGeneration,\n",
" AutoProcessor,\n",
" TextIteratorStreamer,\n",
")\n",
"from transformers.image_utils import load_image\n",
"\n",
"# Constants for text generation\n",
"MAX_MAX_NEW_TOKENS = 2048\n",
"DEFAULT_MAX_NEW_TOKENS = 1024\n",
"# Increase or disable input truncation to avoid token mismatches\n",
"MAX_INPUT_TOKEN_LENGTH = int(os.getenv(\"MAX_INPUT_TOKEN_LENGTH\", \"8192\"))\n",
"\n",
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
"\n",
"MODEL_ID = \"scb10x/typhoon-ocr-7b\"\n",
"processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)\n",
"model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(\n",
" MODEL_ID,\n",
" trust_remote_code=True,\n",
" torch_dtype=torch.float16\n",
").to(\"cuda\").eval()\n",
"\n",
"def downsample_video(video_path):\n",
" \"\"\"\n",
" Downsamples the video to evenly spaced frames.\n",
" Each frame is returned as a PIL image along with its timestamp.\n",
" \"\"\"\n",
" vidcap = cv2.VideoCapture(video_path)\n",
" total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))\n",
" fps = vidcap.get(cv2.CAP_PROP_FPS)\n",
" frames = []\n",
" # Sample 10 evenly spaced frames.\n",
" frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)\n",
" for i in frame_indices:\n",
" vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)\n",
" success, image = vidcap.read()\n",
" if success:\n",
" image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB\n",
" pil_image = Image.fromarray(image)\n",
" timestamp = round(i / fps, 2)\n",
" frames.append((pil_image, timestamp))\n",
" vidcap.release()\n",
" return frames\n",
"\n",
"@spaces.GPU\n",
"def generate_image(text: str, image: Image.Image,\n",
" max_new_tokens: int = 1024,\n",
" temperature: float = 0.6,\n",
" top_p: float = 0.9,\n",
" top_k: int = 50,\n",
" repetition_penalty: float = 1.2):\n",
"\n",
" if image is None:\n",
" yield \"Please upload an image.\"\n",
" return\n",
"\n",
" messages = [{\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\"type\": \"image\", \"image\": image},\n",
" {\"type\": \"text\", \"text\": text},\n",
" ]\n",
" }]\n",
" prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)\n",
" inputs = processor(\n",
" text=[prompt_full],\n",
" images=[image],\n",
" return_tensors=\"pt\",\n",
" padding=True,\n",
" truncation=False,\n",
" max_length=MAX_INPUT_TOKEN_LENGTH\n",
" ).to(\"cuda\")\n",
" streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)\n",
" generation_kwargs = {**inputs, \"streamer\": streamer, \"max_new_tokens\": max_new_tokens}\n",
" thread = Thread(target=model_m.generate, kwargs=generation_kwargs)\n",
" thread.start()\n",
" buffer = \"\"\n",
" for new_text in streamer:\n",
" buffer += new_text\n",
" buffer = buffer.replace(\"<|im_end|>\", \"\")\n",
" time.sleep(0.01)\n",
" yield buffer\n",
"\n",
"@spaces.GPU\n",
"def generate_video(text: str, video_path: str,\n",
" max_new_tokens: int = 1024,\n",
" temperature: float = 0.6,\n",
" top_p: float = 0.9,\n",
" top_k: int = 50,\n",
" repetition_penalty: float = 1.2):\n",
"\n",
" if video_path is None:\n",
" yield \"Please upload a video.\"\n",
" return\n",
"\n",
" frames = downsample_video(video_path)\n",
" messages = [\n",
" {\"role\": \"system\", \"content\": [{\"type\": \"text\", \"text\": \"You are a helpful assistant.\"}]},\n",
" {\"role\": \"user\", \"content\": [{\"type\": \"text\", \"text\": text}]}\n",
" ]\n",
" # Append each frame with its timestamp.\n",
" for frame in frames:\n",
" image, timestamp = frame\n",
" messages[1][\"content\"].append({\"type\": \"text\", \"text\": f\"Frame {timestamp}:\"})\n",
" messages[1][\"content\"].append({\"type\": \"image\", \"image\": image})\n",
" inputs = processor.apply_chat_template(\n",
" messages,\n",
" tokenize=True,\n",
" add_generation_prompt=True,\n",
" return_dict=True,\n",
" return_tensors=\"pt\",\n",
" truncation=False,\n",
" max_length=MAX_INPUT_TOKEN_LENGTH\n",
" ).to(\"cuda\")\n",
" streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)\n",
" generation_kwargs = {\n",
" **inputs,\n",
" \"streamer\": streamer,\n",
" \"max_new_tokens\": max_new_tokens,\n",
" \"do_sample\": True,\n",
" \"temperature\": temperature,\n",
" \"top_p\": top_p,\n",
" \"top_k\": top_k,\n",
" \"repetition_penalty\": repetition_penalty,\n",
" }\n",
" thread = Thread(target=model_m.generate, kwargs=generation_kwargs)\n",
" thread.start()\n",
" buffer = \"\"\n",
" for new_text in streamer:\n",
" buffer += new_text\n",
" buffer = buffer.replace(\"<|im_end|>\", \"\")\n",
" time.sleep(0.01)\n",
" yield buffer\n",
"\n",
"css = \"\"\"\n",
".submit-btn {\n",
" background-color: #2980b9 !important;\n",
" color: white !important;\n",
"}\n",
".submit-btn:hover {\n",
" background-color: #3498db !important;\n",
"}\n",
"\"\"\"\n",
"\n",
"# Create the Gradio Interface\n",
"with gr.Blocks(css=css, theme=\"bethecloud/storj_theme\") as demo:\n",
" gr.Markdown(\"# **typhoon-ocr-7b**\")\n",
" with gr.Row():\n",
" with gr.Column():\n",
" with gr.Tabs():\n",
" with gr.TabItem(\"Image Inference\"):\n",
" image_query = gr.Textbox(label=\"Query Input\", placeholder=\"Enter your query here...\")\n",
" image_upload = gr.Image(type=\"pil\", label=\"Image\")\n",
" image_submit = gr.Button(\"Submit\", elem_classes=\"submit-btn\")\n",
"\n",
" with gr.TabItem(\"Video Inference\"):\n",
" video_query = gr.Textbox(label=\"Query Input\", placeholder=\"Enter your query here...\")\n",
" video_upload = gr.Video(label=\"Video\")\n",
" video_submit = gr.Button(\"Submit\", elem_classes=\"submit-btn\")\n",
"\n",
" with gr.Accordion(\"Advanced options\", open=False):\n",
" max_new_tokens = gr.Slider(label=\"Max new tokens\", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)\n",
" temperature = gr.Slider(label=\"Temperature\", minimum=0.1, maximum=4.0, step=0.1, value=0.6)\n",
" top_p = gr.Slider(label=\"Top-p (nucleus sampling)\", minimum=0.05, maximum=1.0, step=0.05, value=0.9)\n",
" top_k = gr.Slider(label=\"Top-k\", minimum=1, maximum=1000, step=1, value=50)\n",
" repetition_penalty = gr.Slider(label=\"Repetition penalty\", minimum=1.0, maximum=2.0, step=0.05, value=1.2)\n",
" with gr.Column():\n",
" output = gr.Textbox(label=\"Output\", interactive=False)\n",
"\n",
" image_submit.click(\n",
" fn=generate_image,\n",
" inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],\n",
" outputs=output\n",
" )\n",
" video_submit.click(\n",
" fn=generate_video,\n",
" inputs=[video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],\n",
" outputs=output\n",
" )\n",
"\n",
"if __name__ == \"__main__\":\n",
" demo.queue(max_size=30).launch(share=True, ssr_mode=False, show_error=True)"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|