{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "gpuType": "T4" }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "accelerator": "GPU" }, "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "id": "m7rU-pjX3Y1O" }, "outputs": [], "source": [ "%%capture\n", "!pip install gradio transformers==4.30.2 pillow\n", "!pip install torch torchvision hf_xet timm==1.0.10\n", "!pip install flash-attn --no-build-isolation" ] }, { "cell_type": "code", "source": [ "import gradio as gr\n", "import torch\n", "from PIL import Image\n", "from transformers import AutoProcessor, AutoModelForCausalLM\n", "\n", "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", "vision_language_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()\n", "vision_language_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)\n", "\n", "def describe_image(uploaded_image):\n", " \"\"\"\n", " Generates a detailed description of the input image.\n", "\n", " Args:\n", " uploaded_image (PIL.Image.Image or numpy.ndarray): The image to describe.\n", "\n", " Returns:\n", " str: A detailed textual description of the image.\n", " \"\"\"\n", " if not isinstance(uploaded_image, Image.Image):\n", " uploaded_image = Image.fromarray(uploaded_image)\n", "\n", " inputs = vision_language_processor(text=\"\", images=uploaded_image, return_tensors=\"pt\").to(device)\n", " with torch.no_grad():\n", " generated_ids = vision_language_model.generate(\n", " input_ids=inputs[\"input_ids\"],\n", " pixel_values=inputs[\"pixel_values\"],\n", " max_new_tokens=1024,\n", " early_stopping=False,\n", " do_sample=False,\n", " num_beams=3,\n", " )\n", " generated_text = vision_language_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]\n", " processed_description = vision_language_processor.post_process_generation(\n", " generated_text,\n", " task=\"\",\n", " image_size=(uploaded_image.width, uploaded_image.height)\n", " )\n", " image_description = processed_description[\"\"]\n", " print(\"\\nImage description generated!:\", image_description)\n", " return image_description\n", "\n", "image_description_interface = gr.Interface(\n", " fn=describe_image,\n", " inputs=gr.Image(label=\"Upload Image\"),\n", " outputs=gr.Textbox(label=\"Generated Caption\", lines=4, show_copy_button=True),\n", " live=False,\n", ")\n", "\n", "image_description_interface.launch(debug=True, ssr_mode=False)" ], "metadata": { "id": "kW4MjaOs3c9E" }, "execution_count": null, "outputs": [] } ] }