Datasets:

Modalities:
Text
Formats:
json
Languages:
Catalan
Libraries:
Datasets
pandas
License:
crodri commited on
Commit
6085a3a
·
verified ·
1 Parent(s): ab1f174

Delete tecla.py

Browse files
Files changed (1) hide show
  1. tecla.py +0 -157
tecla.py DELETED
@@ -1,157 +0,0 @@
1
- # Loading script for the TeCla dataset.
2
- import json
3
- import datasets
4
-
5
- logger = datasets.logging.get_logger(__name__)
6
-
7
- _CITATION = """
8
- Baucells, Irene, Carrino, Casimiro Pio, Rodriguez-Penagos, Carlos Gerardo, & Armentano-Oller, Carme. (2021).
9
- TeCla: Text Classification Catalan dataset (Version 2.0) [Data set].
10
- Zenodo. http://doi.org/10.5281/zenodo.7334110
11
- """
12
-
13
- _DESCRIPTION = """
14
- TeCla: Text Classification Catalan dataset
15
- Catalan News corpus for Text classification, crawled from ACN (Catalan News Agency) site: www.acn.cat
16
- Corpus de notícies en català per a classificació textual, extret del web de l'Agència Catalana de Notícies - www.acn.cat
17
- """
18
-
19
- _HOMEPAGE = """https://zenodo.org/record/4761505"""
20
-
21
- # TODO: upload datasets to github
22
- _URL = "./"
23
- _TRAINING_FILE = "train.json"
24
- _DEV_FILE = "dev.json"
25
- _TEST_FILE = "test.json"
26
-
27
-
28
- class teclaConfig(datasets.BuilderConfig):
29
- """ Builder config for the TeCla dataset """
30
-
31
- def __init__(self, **kwargs):
32
- """BuilderConfig for TeCla.
33
- Args:
34
- **kwargs: keyword arguments forwarded to super.
35
- """
36
- super(teclaConfig, self).__init__(**kwargs)
37
-
38
-
39
- class tecla(datasets.GeneratorBasedBuilder):
40
- """ TeCla Dataset """
41
-
42
- BUILDER_CONFIGS = [
43
- teclaConfig(
44
- name="tecla",
45
- version=datasets.Version("1.0.1"),
46
- description="tecla 2.0 dataset",
47
- ),
48
- ]
49
-
50
- def _info(self):
51
- return datasets.DatasetInfo(
52
- description=_DESCRIPTION,
53
- features=datasets.Features(
54
- {
55
- "text": datasets.Value("string"),
56
- "label1": datasets.features.ClassLabel
57
- (names=
58
- [
59
- "Societat",
60
- "Pol\u00edtica",
61
- "Economia",
62
- "Cultura",
63
- ]
64
- ),
65
- "label2": datasets.features.ClassLabel
66
- (names=
67
- [
68
- "Llengua",
69
- "Infraestructures",
70
- "Arts",
71
- "Parlament",
72
- "Noves tecnologies",
73
- "Castells",
74
- "Successos",
75
- "Empresa",
76
- "Mobilitat",
77
- "Teatre",
78
- "Treball",
79
- "Log\u00edstica",
80
- "Urbanisme",
81
- "Govern",
82
- "Entitats",
83
- "Finances",
84
- "Govern espanyol",
85
- "Tr\u00e0nsit",
86
- "Ind\u00fastria",
87
- "Esports",
88
- "Exteriors",
89
- "Medi ambient",
90
- "Habitatge",
91
- "Salut",
92
- "Equipaments i patrimoni",
93
- "Recerca",
94
- "Cooperaci\u00f3",
95
- "Innovaci\u00f3",
96
- "Agroalimentaci\u00f3",
97
- "Policial",
98
- "Serveis Socials",
99
- "Cinema",
100
- "Mem\u00f2ria hist\u00f2rica",
101
- "Turisme",
102
- "Pol\u00edtica municipal",
103
- "Comer\u00e7",
104
- "Universitats",
105
- "Hisenda",
106
- "Judicial",
107
- "Partits",
108
- "M\u00fasica",
109
- "Lletres",
110
- "Religi\u00f3",
111
- "Festa i cultura popular",
112
- "Uni\u00f3 Europea",
113
- "Moda",
114
- "Moviments socials",
115
- "Comptes p\u00fablics",
116
- "Immigraci\u00f3",
117
- "Educaci\u00f3",
118
- "Gastronomia",
119
- "Meteorologia",
120
- "Energia"
121
- ]
122
- ),
123
- }
124
- ),
125
- homepage=_HOMEPAGE,
126
- citation=_CITATION,
127
- )
128
-
129
- def _split_generators(self, dl_manager):
130
- """Returns SplitGenerators."""
131
- urls_to_download = {
132
- "train": f"{_URL}{_TRAINING_FILE}",
133
- "dev": f"{_URL}{_DEV_FILE}",
134
- "test": f"{_URL}{_TEST_FILE}",
135
- }
136
- downloaded_files = dl_manager.download_and_extract(urls_to_download)
137
-
138
- return [
139
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
140
- datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
141
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
142
- ]
143
-
144
- def _generate_examples(self, filepath):
145
- """This function returns the examples in the raw (text) form."""
146
- logger.info("generating examples from = %s", filepath)
147
- with open(filepath, encoding="utf-8") as f:
148
- acn_ca = json.load(f)
149
- for id_, article in enumerate(acn_ca["data"]):
150
- text = article["sentence"]
151
- label1 = article["label1"]
152
- label2 = article["label2"]
153
- yield id_, {
154
- "text": text,
155
- "label1": label1,
156
- "label2": label2,
157
- }