Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Sub-tasks:
multi-class-classification
Languages:
Catalan
Size:
100K - 1M
License:
Delete tecla.py
Browse files
tecla.py
DELETED
@@ -1,157 +0,0 @@
|
|
1 |
-
# Loading script for the TeCla dataset.
|
2 |
-
import json
|
3 |
-
import datasets
|
4 |
-
|
5 |
-
logger = datasets.logging.get_logger(__name__)
|
6 |
-
|
7 |
-
_CITATION = """
|
8 |
-
Baucells, Irene, Carrino, Casimiro Pio, Rodriguez-Penagos, Carlos Gerardo, & Armentano-Oller, Carme. (2021).
|
9 |
-
TeCla: Text Classification Catalan dataset (Version 2.0) [Data set].
|
10 |
-
Zenodo. http://doi.org/10.5281/zenodo.7334110
|
11 |
-
"""
|
12 |
-
|
13 |
-
_DESCRIPTION = """
|
14 |
-
TeCla: Text Classification Catalan dataset
|
15 |
-
Catalan News corpus for Text classification, crawled from ACN (Catalan News Agency) site: www.acn.cat
|
16 |
-
Corpus de notícies en català per a classificació textual, extret del web de l'Agència Catalana de Notícies - www.acn.cat
|
17 |
-
"""
|
18 |
-
|
19 |
-
_HOMEPAGE = """https://zenodo.org/record/4761505"""
|
20 |
-
|
21 |
-
# TODO: upload datasets to github
|
22 |
-
_URL = "./"
|
23 |
-
_TRAINING_FILE = "train.json"
|
24 |
-
_DEV_FILE = "dev.json"
|
25 |
-
_TEST_FILE = "test.json"
|
26 |
-
|
27 |
-
|
28 |
-
class teclaConfig(datasets.BuilderConfig):
|
29 |
-
""" Builder config for the TeCla dataset """
|
30 |
-
|
31 |
-
def __init__(self, **kwargs):
|
32 |
-
"""BuilderConfig for TeCla.
|
33 |
-
Args:
|
34 |
-
**kwargs: keyword arguments forwarded to super.
|
35 |
-
"""
|
36 |
-
super(teclaConfig, self).__init__(**kwargs)
|
37 |
-
|
38 |
-
|
39 |
-
class tecla(datasets.GeneratorBasedBuilder):
|
40 |
-
""" TeCla Dataset """
|
41 |
-
|
42 |
-
BUILDER_CONFIGS = [
|
43 |
-
teclaConfig(
|
44 |
-
name="tecla",
|
45 |
-
version=datasets.Version("1.0.1"),
|
46 |
-
description="tecla 2.0 dataset",
|
47 |
-
),
|
48 |
-
]
|
49 |
-
|
50 |
-
def _info(self):
|
51 |
-
return datasets.DatasetInfo(
|
52 |
-
description=_DESCRIPTION,
|
53 |
-
features=datasets.Features(
|
54 |
-
{
|
55 |
-
"text": datasets.Value("string"),
|
56 |
-
"label1": datasets.features.ClassLabel
|
57 |
-
(names=
|
58 |
-
[
|
59 |
-
"Societat",
|
60 |
-
"Pol\u00edtica",
|
61 |
-
"Economia",
|
62 |
-
"Cultura",
|
63 |
-
]
|
64 |
-
),
|
65 |
-
"label2": datasets.features.ClassLabel
|
66 |
-
(names=
|
67 |
-
[
|
68 |
-
"Llengua",
|
69 |
-
"Infraestructures",
|
70 |
-
"Arts",
|
71 |
-
"Parlament",
|
72 |
-
"Noves tecnologies",
|
73 |
-
"Castells",
|
74 |
-
"Successos",
|
75 |
-
"Empresa",
|
76 |
-
"Mobilitat",
|
77 |
-
"Teatre",
|
78 |
-
"Treball",
|
79 |
-
"Log\u00edstica",
|
80 |
-
"Urbanisme",
|
81 |
-
"Govern",
|
82 |
-
"Entitats",
|
83 |
-
"Finances",
|
84 |
-
"Govern espanyol",
|
85 |
-
"Tr\u00e0nsit",
|
86 |
-
"Ind\u00fastria",
|
87 |
-
"Esports",
|
88 |
-
"Exteriors",
|
89 |
-
"Medi ambient",
|
90 |
-
"Habitatge",
|
91 |
-
"Salut",
|
92 |
-
"Equipaments i patrimoni",
|
93 |
-
"Recerca",
|
94 |
-
"Cooperaci\u00f3",
|
95 |
-
"Innovaci\u00f3",
|
96 |
-
"Agroalimentaci\u00f3",
|
97 |
-
"Policial",
|
98 |
-
"Serveis Socials",
|
99 |
-
"Cinema",
|
100 |
-
"Mem\u00f2ria hist\u00f2rica",
|
101 |
-
"Turisme",
|
102 |
-
"Pol\u00edtica municipal",
|
103 |
-
"Comer\u00e7",
|
104 |
-
"Universitats",
|
105 |
-
"Hisenda",
|
106 |
-
"Judicial",
|
107 |
-
"Partits",
|
108 |
-
"M\u00fasica",
|
109 |
-
"Lletres",
|
110 |
-
"Religi\u00f3",
|
111 |
-
"Festa i cultura popular",
|
112 |
-
"Uni\u00f3 Europea",
|
113 |
-
"Moda",
|
114 |
-
"Moviments socials",
|
115 |
-
"Comptes p\u00fablics",
|
116 |
-
"Immigraci\u00f3",
|
117 |
-
"Educaci\u00f3",
|
118 |
-
"Gastronomia",
|
119 |
-
"Meteorologia",
|
120 |
-
"Energia"
|
121 |
-
]
|
122 |
-
),
|
123 |
-
}
|
124 |
-
),
|
125 |
-
homepage=_HOMEPAGE,
|
126 |
-
citation=_CITATION,
|
127 |
-
)
|
128 |
-
|
129 |
-
def _split_generators(self, dl_manager):
|
130 |
-
"""Returns SplitGenerators."""
|
131 |
-
urls_to_download = {
|
132 |
-
"train": f"{_URL}{_TRAINING_FILE}",
|
133 |
-
"dev": f"{_URL}{_DEV_FILE}",
|
134 |
-
"test": f"{_URL}{_TEST_FILE}",
|
135 |
-
}
|
136 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
137 |
-
|
138 |
-
return [
|
139 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
140 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
141 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, filepath):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
logger.info("generating examples from = %s", filepath)
|
147 |
-
with open(filepath, encoding="utf-8") as f:
|
148 |
-
acn_ca = json.load(f)
|
149 |
-
for id_, article in enumerate(acn_ca["data"]):
|
150 |
-
text = article["sentence"]
|
151 |
-
label1 = article["label1"]
|
152 |
-
label2 = article["label2"]
|
153 |
-
yield id_, {
|
154 |
-
"text": text,
|
155 |
-
"label1": label1,
|
156 |
-
"label2": label2,
|
157 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|