leonleyang commited on
Commit
221adfb
·
verified ·
1 Parent(s): 9b42776

Create fashion-mnist.py

Browse files
Files changed (1) hide show
  1. fashion-mnist.py +69 -0
fashion-mnist.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gzip
2
+ import numpy as np
3
+ import datasets
4
+
5
+
6
+ class FashionMNIST(datasets.GeneratorBasedBuilder):
7
+ """Grayscale image classification.
8
+
9
+ `Fashion-MNIST` is a dataset of Zalando's article images consisting of a training set of 60,000 examples
10
+ and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes.
11
+ """
12
+
13
+ VERSION = datasets.Version("1.0.0")
14
+
15
+ def _info(self):
16
+ return datasets.DatasetInfo(
17
+ description="Fashion-MNIST is a dataset of Zalando's article images for image classification tasks.",
18
+ features=datasets.Features(
19
+ {
20
+ "image": datasets.Image(),
21
+ "label": datasets.ClassLabel(names=[
22
+ "T-shirt/top", "Trouser", "Pullover", "Dress", "Coat",
23
+ "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"
24
+ ])
25
+ }
26
+ ),
27
+ supervised_keys=("image", "label"),
28
+ homepage="https://github.com/zalandoresearch/fashion-mnist",
29
+ license="MIT License",
30
+ citation="""@article{xiao2017fashion,
31
+ title={Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms},
32
+ author={Xiao, Han and Rasul, Kashif and Vollgraf, Roland},
33
+ journal={arXiv preprint arXiv:1708.07747},
34
+ year={2017}}"""
35
+ )
36
+
37
+ def _split_generators(self, dl_manager):
38
+ urls = {
39
+ "train_images": "http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz",
40
+ "train_labels": "http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz",
41
+ "test_images": "http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz",
42
+ "test_labels": "http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz",
43
+ }
44
+ downloaded_files = dl_manager.download(urls)
45
+ return [
46
+ datasets.SplitGenerator(
47
+ name=datasets.Split.TRAIN,
48
+ gen_kwargs={
49
+ "images_path": downloaded_files["train_images"],
50
+ "labels_path": downloaded_files["train_labels"],
51
+ },
52
+ ),
53
+ datasets.SplitGenerator(
54
+ name=datasets.Split.TEST,
55
+ gen_kwargs={
56
+ "images_path": downloaded_files["test_images"],
57
+ "labels_path": downloaded_files["test_labels"],
58
+ },
59
+ ),
60
+ ]
61
+
62
+ def _generate_examples(self, images_path, labels_path):
63
+ with gzip.open(images_path, "rb") as img_path:
64
+ images = np.frombuffer(img_path.read(), dtype=np.uint8, offset=16).reshape(-1, 28, 28)
65
+ with gzip.open(labels_path, "rb") as lbl_path:
66
+ labels = np.frombuffer(lbl_path.read(), dtype=np.uint8, offset=8)
67
+
68
+ for idx, (image, label) in enumerate(zip(images, labels)):
69
+ yield idx, {"image": image, "label": label}