--- {} --- # Dataset Card for KMNIST ## Dataset Details ### Dataset Description This dataset contains two variants, **Kuzushiji-MNIST** and **Kuzushiji-49**. **Kuzushiji-MNIST** is a drop-in replacement for the MNIST dataset. **Kuzushiji-49**, as the name suggests, has 49 classes, is a much larger, but imbalanced dataset containing 48 Hiragana characters and one Hiragana iteration mark. - **License:** CC BY-SA 4.0 ### Dataset Sources - **Homepage:** https://github.com/rois-codh/kmnist - **Paper:** Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., & Ha, D. (2018). Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718. ## Dataset Structure #### Kuzushiji-MNIST: Total images: 70,000 Classes: 10 categories Splits: - **Train:** 60,000 images - **Test:** 10,000 images Image specs: 28×28 pixels, grayscale #### Kuzushiji-49: Total images: 270,912 Classes: 49 categories Splits: - **Train:** 232,365 images - **Test:** 38,547 images Image specs: 28×28 pixels, grayscale ## Example Usage Below is a quick example of how to load this dataset via the Hugging Face Datasets library. ``` from datasets import load_dataset # Load the dataset dataset = load_dataset("randall-lab/kmnist", name="kmnist", split="train", trust_remote_code=True) # dataset = load_dataset("randall-lab/kmnist", name="kmnist", split="test", trust_remote_code=True) # dataset = load_dataset("randall-lab/kmnist", name="k49mnist", split="train", trust_remote_code=True) # dataset = load_dataset("randall-lab/kmnist", name="k49mnist", split="test", trust_remote_code=True) # Access a sample from the dataset example = dataset[0] image = example["image"] label = example["label"] image.show() # Display the image print(f"Label: {label}") ``` ## Citation **BibTeX:** @article{clanuwat2018deep, title={Deep learning for classical japanese literature}, author={Clanuwat, Tarin and Bober-Irizar, Mikel and Kitamoto, Asanobu and Lamb, Alex and Yamamoto, Kazuaki and Ha, David}, journal={arXiv preprint arXiv:1812.01718}, year={2018} }