File size: 8,231 Bytes
c76f387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94b4cf9
 
a57bf90
 
94b4cf9
 
 
 
 
 
9d58a8b
 
 
c76f387
 
e294063
 
 
af26c0f
e294063
 
 
 
 
4ee7e74
 
af26c0f
 
563b8cb
af26c0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ee7e74
 
 
 
 
 
af26c0f
 
4ee7e74
af26c0f
4ee7e74
 
 
 
 
 
 
 
 
 
 
 
af26c0f
 
 
 
 
 
4ee7e74
 
 
 
 
 
 
 
1d9e2bf
 
af26c0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d9e2bf
af26c0f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
---
language:
- ar
configs:
- config_name: default
  data_files:
  - split: Amiri
    path: Amiri/*.csv
  - split: Sakkal_Majalla
    path: Sakkal_Majalla/*.csv
  - split: Arial
    path: Arial/*.csv
  - split: Calibri
    path: Calibri/*.csv
  - split: Scheherazade_New
    path: Scheherazade_New/*.csv
  - split: Jozoor_Font
    path: Jozoor_Font/*.csv
  - split: Al_Jazeera_Arabic_Regular
    path: Al_Jazeera_Arabic_Regular/*.csv
  - split: Lateef
    path: Lateef/*.csv
  - split: Noto_Naskh_Arabic_UI
    path: Noto_Naskh_Arabic_UI/*.csv
  - split: Thabit
    path: Thabit/*.csv
features:
  text:
    dtype: string
tags:
- dataset
- OCR
- Arabic
- Image-to-text
license: apache-2.0
pretty_name: >-
  SAND-Extended: A Large-Scale Synthetic Arabic OCR Corpus for Vision-Language
  Models
task_categories:
- image-to-text
---

# SAND: A Large-Scale Synthetic Arabic OCR Dataset

[![Hugging Face Datasets](https://img.shields.io/badge/πŸ€—%20Hugging%20Face-Datasets-yellow)](https://huggingface.co/datasets/riotu-lab/SAND-Extended)
[![GitHub](https://img.shields.io/badge/GitHub-Repository-blue)](https://github.com/riotu-lab/text2image)

## Overview

**SAND** (Synthetic Arabic OCR Dataset) is a large-scale, synthetically generated dataset designed for training and evaluating Optical Character Recognition (OCR) models for Arabic text. This dataset addresses the critical need for comprehensive Arabic text recognition resources by providing controlled, diverse, and scalable training data that simulates real-world book layouts.

## Key Features

- **Massive Scale**: 843,622 document images containing approximately 690 million words
- **Extensive Typographic Diversity**: Ten distinct Arabic fonts covering a wide range of styles
- **Structured Formatting**: Designed to mimic real-world book layouts with consistent typography
- **Clean Data**: Synthetically generated with no scanning artifacts, blur, or distortions
- **Content Diversity**: Text spans multiple domains including culture, literature, Shariah, social topics, and more

## Dataset Structure

The dataset is divided into ten splits based on font name:

- **Amiri**: Classical Naskh typeface inspired by early 20th century typography
- **Sakkal Majalla**: Widely used font in contemporary Arabic publishing
- **Arial**: Modern sans-serif font common in digital publications
- **Calibri**: Microsoft's default font representing contemporary digital typography
- **Scheherazade New**: Traditional-style font based on classical manuscript styles
- **Jozoor Font**: Decorative Arabic font with more stylized character forms
- **Lateef**: Extended Arabic script font designed for readability at small sizes
- **Noto Naskh Arabic UI**: Part of Google's Noto family, designed for user interfaces
- **Thabit**: Monospaced Arabic font for technical documentation
- **Al Jazeera Arabic Regular**: Based on the typography used by Al Jazeera media

πŸ“‹ Sample Images
<div align="center">
  <table>
    <tr>
      <td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/gwF9jkkkpzRSzrP9GCE_l.png" width="300" alt="Sample 1 - Amiri Font"/></td>
      <td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/dsqWoCh5x31eGq-u-PqPS.png" width="300" alt="Sample 2 - Arial Font"/></td>
    </tr>
    <tr>
      <td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/2XK9Ey6k6HSDXKXCxmVRG.png" width="300" alt="Sample 3 - Calibri Font"/></td>
      <td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/CxKITKvc3EnDIuqnNy_bV.png" width="300" alt="Sample 4 - Scheherazade Font"/></td>
    </tr>
  </table>
</div>

Each split contains data specific to a single font with the following attributes:

- `image_name`: Unique identifier for each image
- `chunk`: The text content associated with the image
- `font_name`: The font used in text rendering
- `image_base64`: Base64-encoded image representation

## Content Distribution

| Category | Number of Articles |
|----------|-------------------|
| Culture | 13,253 |
| Fatawa & Counsels | 8,096 |
| Literature & Language | 11,581 |
| Bibliography | 26,393 |
| Publications & Competitions | 1,123 |
| Shariah | 46,665 |
| Social | 8,827 |
| Translations | 443 |
| Muslim's News | 16,725 |
| **Total Articles** | **133,105** |

## Font Specifications

| Font | Words Per Page | Font Size | Characteristics |
|------|----------------|-----------|-----------------|
| Sakkal Majalla | 50–300 | 14 pt | Contemporary publishing style |
| Arial | 50–500 | 12 pt | Modern sans-serif |
| Calibri | 50–500 | 12 pt | Contemporary digital document |
| Amiri | 50–300 | 12 pt | Classical Naskh typeface |
| Scheherazade New | 50–250 | 12 pt | Traditional manuscript style |
| Noto Naskh Arabic UI | 50–400 | 12 pt | Clear UI rendering |
| Lateef | 50–350 | 14 pt | Optimized for small sizes |
| Al-Jazeera-Arabic | 50–250 | 12 pt | Media/journalistic style |
| Thabit | 50–240 | 12 pt | Monospaced technical font |
| Jozoor Font | 50–200 | 12 pt | Decorative with stylization |

## Page Layout

| Specification | Measurement |
|---------------|-------------|
| Page Size | A4 (8.27 Γ— 11.69 in) |
| Left Margin | 0.9 in |
| Right Margin | 0.9 in |
| Top Margin | 1.0 in |
| Bottom Margin | 1.0 in |
| Gutter Margin | 0.2 in |
| Resolution | 300 DPI |
| Color Mode | Grayscale |
| Page Direction | Right-to-Left |
| Text Alignment | Right |
| Line Spacing | 1.15 |

## Usage Example

```python
from datasets import load_dataset
import base64
from io import BytesIO
from PIL import Image
import matplotlib.pyplot as plt

# Load dataset with streaming enabled
ds = load_dataset("riotu-lab/SAND-Extended", streaming=True)
print(ds)

# Iterate over a specific font dataset (e.g., Amiri)
for sample in ds["Amiri"]:
    image_name = sample["image_name"]
    chunk = sample["chunk"]  # Arabic text transcription
    font_name = sample["font_name"]
    
    # Decode Base64 image
    image_data = base64.b64decode(sample["image_base64"])
    image = Image.open(BytesIO(image_data))

    # Display the image
    plt.figure(figsize=(10, 10))
    plt.imshow(image)
    plt.axis('off')
    plt.title(f"Font: {font_name}")
    plt.show()

    # Print the details
    print(f"Image Name: {image_name}")
    print(f"Font Name: {font_name}")
    print(f"Text Chunk: {chunk}")
    
    # Break after one sample for testing
    break
```

## Working with Multiple Fonts

To train or evaluate models across different font styles:

```python
from datasets import load_dataset
import random

# Load the dataset
ds = load_dataset("riotu-lab/SAND")

# Select a balanced sample from multiple fonts
fonts_to_use = ["Amiri", "Arial", "Scheherazade_New", "Thabit", "Noto_Naskh_Arabic_UI"]
samples_per_font = 1000
combined_samples = []

for font in fonts_to_use:
    # Get random samples from this font
    font_samples = ds[font].shuffle(seed=42).select(range(samples_per_font))
    combined_samples.extend([(sample, font) for sample in font_samples])

# Shuffle the combined samples
random.shuffle(combined_samples)

# Now you can use these samples for training or evaluation
for sample, font in combined_samples[:5]:  # Just show first 5 as example
    print(f"Font: {font}, Image: {sample['image_name']}")
```


## Applications

SAND is designed to support various Arabic text recognition tasks:

- Training and evaluating OCR models for Arabic text
- Developing vision-language models for document understanding
- Fine-tuning existing OCR models for better Arabic script recognition
- Benchmarking OCR performance across different fonts and layouts
- Research in Arabic natural language processing and computer vision
- Developing font-adaptive OCR systems that generalize across typographic styles

## Citation

If you use SAND in your research, please cite:

```bibtex
@misc{sand2025,
  title={SAND: A Large-Scale Synthetic Arabic OCR Dataset for Vision-Language Models},
  author={RIOTU Lab},
  year={2025},
  howpublished={\url{https://huggingface.co/datasets/riotu-lab/SAND}}
}
```

## Acknowledgments

The authors thank Prince Sultan University for their support in developing this dataset.