File size: 8,231 Bytes
c76f387 94b4cf9 a57bf90 94b4cf9 9d58a8b c76f387 e294063 af26c0f e294063 4ee7e74 af26c0f 563b8cb af26c0f 4ee7e74 af26c0f 4ee7e74 af26c0f 4ee7e74 af26c0f 4ee7e74 1d9e2bf af26c0f 1d9e2bf af26c0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
---
language:
- ar
configs:
- config_name: default
data_files:
- split: Amiri
path: Amiri/*.csv
- split: Sakkal_Majalla
path: Sakkal_Majalla/*.csv
- split: Arial
path: Arial/*.csv
- split: Calibri
path: Calibri/*.csv
- split: Scheherazade_New
path: Scheherazade_New/*.csv
- split: Jozoor_Font
path: Jozoor_Font/*.csv
- split: Al_Jazeera_Arabic_Regular
path: Al_Jazeera_Arabic_Regular/*.csv
- split: Lateef
path: Lateef/*.csv
- split: Noto_Naskh_Arabic_UI
path: Noto_Naskh_Arabic_UI/*.csv
- split: Thabit
path: Thabit/*.csv
features:
text:
dtype: string
tags:
- dataset
- OCR
- Arabic
- Image-to-text
license: apache-2.0
pretty_name: >-
SAND-Extended: A Large-Scale Synthetic Arabic OCR Corpus for Vision-Language
Models
task_categories:
- image-to-text
---
# SAND: A Large-Scale Synthetic Arabic OCR Dataset
[](https://huggingface.co/datasets/riotu-lab/SAND-Extended)
[](https://github.com/riotu-lab/text2image)
## Overview
**SAND** (Synthetic Arabic OCR Dataset) is a large-scale, synthetically generated dataset designed for training and evaluating Optical Character Recognition (OCR) models for Arabic text. This dataset addresses the critical need for comprehensive Arabic text recognition resources by providing controlled, diverse, and scalable training data that simulates real-world book layouts.
## Key Features
- **Massive Scale**: 843,622 document images containing approximately 690 million words
- **Extensive Typographic Diversity**: Ten distinct Arabic fonts covering a wide range of styles
- **Structured Formatting**: Designed to mimic real-world book layouts with consistent typography
- **Clean Data**: Synthetically generated with no scanning artifacts, blur, or distortions
- **Content Diversity**: Text spans multiple domains including culture, literature, Shariah, social topics, and more
## Dataset Structure
The dataset is divided into ten splits based on font name:
- **Amiri**: Classical Naskh typeface inspired by early 20th century typography
- **Sakkal Majalla**: Widely used font in contemporary Arabic publishing
- **Arial**: Modern sans-serif font common in digital publications
- **Calibri**: Microsoft's default font representing contemporary digital typography
- **Scheherazade New**: Traditional-style font based on classical manuscript styles
- **Jozoor Font**: Decorative Arabic font with more stylized character forms
- **Lateef**: Extended Arabic script font designed for readability at small sizes
- **Noto Naskh Arabic UI**: Part of Google's Noto family, designed for user interfaces
- **Thabit**: Monospaced Arabic font for technical documentation
- **Al Jazeera Arabic Regular**: Based on the typography used by Al Jazeera media
π Sample Images
<div align="center">
<table>
<tr>
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/gwF9jkkkpzRSzrP9GCE_l.png" width="300" alt="Sample 1 - Amiri Font"/></td>
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/dsqWoCh5x31eGq-u-PqPS.png" width="300" alt="Sample 2 - Arial Font"/></td>
</tr>
<tr>
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/2XK9Ey6k6HSDXKXCxmVRG.png" width="300" alt="Sample 3 - Calibri Font"/></td>
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/CxKITKvc3EnDIuqnNy_bV.png" width="300" alt="Sample 4 - Scheherazade Font"/></td>
</tr>
</table>
</div>
Each split contains data specific to a single font with the following attributes:
- `image_name`: Unique identifier for each image
- `chunk`: The text content associated with the image
- `font_name`: The font used in text rendering
- `image_base64`: Base64-encoded image representation
## Content Distribution
| Category | Number of Articles |
|----------|-------------------|
| Culture | 13,253 |
| Fatawa & Counsels | 8,096 |
| Literature & Language | 11,581 |
| Bibliography | 26,393 |
| Publications & Competitions | 1,123 |
| Shariah | 46,665 |
| Social | 8,827 |
| Translations | 443 |
| Muslim's News | 16,725 |
| **Total Articles** | **133,105** |
## Font Specifications
| Font | Words Per Page | Font Size | Characteristics |
|------|----------------|-----------|-----------------|
| Sakkal Majalla | 50β300 | 14 pt | Contemporary publishing style |
| Arial | 50β500 | 12 pt | Modern sans-serif |
| Calibri | 50β500 | 12 pt | Contemporary digital document |
| Amiri | 50β300 | 12 pt | Classical Naskh typeface |
| Scheherazade New | 50β250 | 12 pt | Traditional manuscript style |
| Noto Naskh Arabic UI | 50β400 | 12 pt | Clear UI rendering |
| Lateef | 50β350 | 14 pt | Optimized for small sizes |
| Al-Jazeera-Arabic | 50β250 | 12 pt | Media/journalistic style |
| Thabit | 50β240 | 12 pt | Monospaced technical font |
| Jozoor Font | 50β200 | 12 pt | Decorative with stylization |
## Page Layout
| Specification | Measurement |
|---------------|-------------|
| Page Size | A4 (8.27 Γ 11.69 in) |
| Left Margin | 0.9 in |
| Right Margin | 0.9 in |
| Top Margin | 1.0 in |
| Bottom Margin | 1.0 in |
| Gutter Margin | 0.2 in |
| Resolution | 300 DPI |
| Color Mode | Grayscale |
| Page Direction | Right-to-Left |
| Text Alignment | Right |
| Line Spacing | 1.15 |
## Usage Example
```python
from datasets import load_dataset
import base64
from io import BytesIO
from PIL import Image
import matplotlib.pyplot as plt
# Load dataset with streaming enabled
ds = load_dataset("riotu-lab/SAND-Extended", streaming=True)
print(ds)
# Iterate over a specific font dataset (e.g., Amiri)
for sample in ds["Amiri"]:
image_name = sample["image_name"]
chunk = sample["chunk"] # Arabic text transcription
font_name = sample["font_name"]
# Decode Base64 image
image_data = base64.b64decode(sample["image_base64"])
image = Image.open(BytesIO(image_data))
# Display the image
plt.figure(figsize=(10, 10))
plt.imshow(image)
plt.axis('off')
plt.title(f"Font: {font_name}")
plt.show()
# Print the details
print(f"Image Name: {image_name}")
print(f"Font Name: {font_name}")
print(f"Text Chunk: {chunk}")
# Break after one sample for testing
break
```
## Working with Multiple Fonts
To train or evaluate models across different font styles:
```python
from datasets import load_dataset
import random
# Load the dataset
ds = load_dataset("riotu-lab/SAND")
# Select a balanced sample from multiple fonts
fonts_to_use = ["Amiri", "Arial", "Scheherazade_New", "Thabit", "Noto_Naskh_Arabic_UI"]
samples_per_font = 1000
combined_samples = []
for font in fonts_to_use:
# Get random samples from this font
font_samples = ds[font].shuffle(seed=42).select(range(samples_per_font))
combined_samples.extend([(sample, font) for sample in font_samples])
# Shuffle the combined samples
random.shuffle(combined_samples)
# Now you can use these samples for training or evaluation
for sample, font in combined_samples[:5]: # Just show first 5 as example
print(f"Font: {font}, Image: {sample['image_name']}")
```
## Applications
SAND is designed to support various Arabic text recognition tasks:
- Training and evaluating OCR models for Arabic text
- Developing vision-language models for document understanding
- Fine-tuning existing OCR models for better Arabic script recognition
- Benchmarking OCR performance across different fonts and layouts
- Research in Arabic natural language processing and computer vision
- Developing font-adaptive OCR systems that generalize across typographic styles
## Citation
If you use SAND in your research, please cite:
```bibtex
@misc{sand2025,
title={SAND: A Large-Scale Synthetic Arabic OCR Dataset for Vision-Language Models},
author={RIOTU Lab},
year={2025},
howpublished={\url{https://huggingface.co/datasets/riotu-lab/SAND}}
}
```
## Acknowledgments
The authors thank Prince Sultan University for their support in developing this dataset. |