riotu-lab commited on
Commit
af26c0f
·
verified ·
1 Parent(s): b12e349

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +167 -27
README.md CHANGED
@@ -29,40 +29,122 @@ features:
29
  dtype: string
30
  tags:
31
  - dataset
 
 
32
  ---
33
 
34
- ### Dataset Description
35
-
36
- This dataset is designed for training and evaluating Optical Character Recognition (OCR) models
37
- for Arabic text. It is an extension of an open-source dataset and includes text rendered in multiple Arabic fonts (Amiri, Sakkal Majalla, Arial, Calibri and Scheherazade New).
38
- The dataset simulates real-world book layouts to enhance OCR accuracy.
39
-
40
- ### Dataset Structure
41
- The dataset is divided into five splits based on font name (Sakkal_Majalla, Amiri, Arial, Calibri, and Scheherazade_New).
42
- Each split contains data specific to a single font. Within each split, the following attributes are present:
43
- - **image_name**: Unique identifier for each image.
44
- - **chunk**: The text content associated with the image.
45
-
46
- - **font_name**: The font used in text rendering.
47
-
48
- - **image_base64**: Base64-encoded image representation.
49
-
50
- ### How to Use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  ```python
53
  from datasets import load_dataset
54
  import base64
55
  from io import BytesIO
56
  from PIL import Image
 
 
57
  # Load dataset with streaming enabled
58
- ds = load_dataset("riotu-lab/sample_text2image", streaming=True)
59
  print(ds)
60
 
61
-
62
-
63
-
64
- # Load the dataset
65
-
66
  # Iterate over a specific font dataset (e.g., Amiri)
67
  for sample in ds["Amiri"]:
68
  image_name = sample["image_name"]
@@ -73,8 +155,12 @@ for sample in ds["Amiri"]:
73
  image_data = base64.b64decode(sample["image_base64"])
74
  image = Image.open(BytesIO(image_data))
75
 
76
- # Show the image (optional)
77
- image.show()
 
 
 
 
78
 
79
  # Print the details
80
  print(f"Image Name: {image_name}")
@@ -85,6 +171,60 @@ for sample in ds["Amiri"]:
85
  break
86
  ```
87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
- # OCR Dataset Generation Pipeline
90
- To create your own dataset, you can use the following repository: [text2image](https://github.com/riotu-lab/text2image).
 
29
  dtype: string
30
  tags:
31
  - dataset
32
+ license: apache-2.0
33
+ pretty_name: SAND
34
  ---
35
 
36
+ # SAND: A Large-Scale Synthetic Arabic OCR Dataset
37
+
38
+ [![Hugging Face Datasets](https://img.shields.io/badge/🤗%20Hugging%20Face-Datasets-yellow)](https://huggingface.co/datasets/riotu-lab/SAND)
39
+ [![GitHub](https://img.shields.io/badge/GitHub-Repository-blue)](https://github.com/riotu-lab/text2image)
40
+
41
+ ## Overview
42
+
43
+ **SAND** (Synthetic Arabic OCR Dataset) is a large-scale, synthetically generated dataset designed for training and evaluating Optical Character Recognition (OCR) models for Arabic text. This dataset addresses the critical need for comprehensive Arabic text recognition resources by providing controlled, diverse, and scalable training data that simulates real-world book layouts.
44
+
45
+ ## Key Features
46
+
47
+ - **Massive Scale**: 843,622 document images containing approximately 690 million words
48
+ - **Extensive Typographic Diversity**: Ten distinct Arabic fonts covering a wide range of styles
49
+ - **Structured Formatting**: Designed to mimic real-world book layouts with consistent typography
50
+ - **Clean Data**: Synthetically generated with no scanning artifacts, blur, or distortions
51
+ - **Content Diversity**: Text spans multiple domains including culture, literature, Shariah, social topics, and more
52
+
53
+ ## Dataset Structure
54
+
55
+ The dataset is divided into ten splits based on font name:
56
+
57
+ - **Amiri**: Classical Naskh typeface inspired by early 20th century typography
58
+ - **Sakkal Majalla**: Widely used font in contemporary Arabic publishing
59
+ - **Arial**: Modern sans-serif font common in digital publications
60
+ - **Calibri**: Microsoft's default font representing contemporary digital typography
61
+ - **Scheherazade New**: Traditional-style font based on classical manuscript styles
62
+ - **Jozoor Font**: Decorative Arabic font with more stylized character forms
63
+ - **Lateef**: Extended Arabic script font designed for readability at small sizes
64
+ - **Noto Naskh Arabic UI**: Part of Google's Noto family, designed for user interfaces
65
+ - **Thabit**: Monospaced Arabic font for technical documentation
66
+ - **Al Jazeera Arabic Regular**: Based on the typography used by Al Jazeera media
67
+
68
+ 📋 Sample Images
69
+ <div align="center">
70
+ <table>
71
+ <tr>
72
+ <td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/gwF9jkkkpzRSzrP9GCE_l.png" width="300" alt="Sample 1 - Amiri Font"/></td>
73
+ <td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/dsqWoCh5x31eGq-u-PqPS.png" width="300" alt="Sample 2 - Arial Font"/></td>
74
+ </tr>
75
+ <tr>
76
+ <td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/2XK9Ey6k6HSDXKXCxmVRG.png" width="300" alt="Sample 3 - Calibri Font"/></td>
77
+ <td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/CxKITKvc3EnDIuqnNy_bV.png" width="300" alt="Sample 4 - Scheherazade Font"/></td>
78
+ </tr>
79
+ </table>
80
+ </div>
81
+
82
+ Each split contains data specific to a single font with the following attributes:
83
+
84
+ - `image_name`: Unique identifier for each image
85
+ - `chunk`: The text content associated with the image
86
+ - `font_name`: The font used in text rendering
87
+ - `image_base64`: Base64-encoded image representation
88
+
89
+ ## Content Distribution
90
+
91
+ | Category | Number of Articles |
92
+ |----------|-------------------|
93
+ | Culture | 13,253 |
94
+ | Fatawa & Counsels | 8,096 |
95
+ | Literature & Language | 11,581 |
96
+ | Bibliography | 26,393 |
97
+ | Publications & Competitions | 1,123 |
98
+ | Shariah | 46,665 |
99
+ | Social | 8,827 |
100
+ | Translations | 443 |
101
+ | Muslim's News | 16,725 |
102
+ | **Total Articles** | **133,105** |
103
+
104
+ ## Font Specifications
105
+
106
+ | Font | Words Per Page | Font Size | Characteristics |
107
+ |------|----------------|-----------|-----------------|
108
+ | Sakkal Majalla | 50–300 | 14 pt | Contemporary publishing style |
109
+ | Arial | 50–500 | 12 pt | Modern sans-serif |
110
+ | Calibri | 50–500 | 12 pt | Contemporary digital document |
111
+ | Amiri | 50–300 | 12 pt | Classical Naskh typeface |
112
+ | Scheherazade New | 50–250 | 12 pt | Traditional manuscript style |
113
+ | Noto Naskh Arabic UI | 50–400 | 12 pt | Clear UI rendering |
114
+ | Lateef | 50–350 | 14 pt | Optimized for small sizes |
115
+ | Al-Jazeera-Arabic | 50–250 | 12 pt | Media/journalistic style |
116
+ | Thabit | 50–240 | 12 pt | Monospaced technical font |
117
+ | Jozoor Font | 50–200 | 12 pt | Decorative with stylization |
118
+
119
+ ## Page Layout
120
+
121
+ | Specification | Measurement |
122
+ |---------------|-------------|
123
+ | Page Size | A4 (8.27 × 11.69 in) |
124
+ | Left Margin | 0.9 in |
125
+ | Right Margin | 0.9 in |
126
+ | Top Margin | 1.0 in |
127
+ | Bottom Margin | 1.0 in |
128
+ | Gutter Margin | 0.2 in |
129
+ | Resolution | 300 DPI |
130
+ | Color Mode | Grayscale |
131
+ | Page Direction | Right-to-Left |
132
+ | Text Alignment | Right |
133
+ | Line Spacing | 1.15 |
134
+
135
+ ## Usage Example
136
 
137
  ```python
138
  from datasets import load_dataset
139
  import base64
140
  from io import BytesIO
141
  from PIL import Image
142
+ import matplotlib.pyplot as plt
143
+
144
  # Load dataset with streaming enabled
145
+ ds = load_dataset("riotu-lab/SAND-Extended", streaming=True)
146
  print(ds)
147
 
 
 
 
 
 
148
  # Iterate over a specific font dataset (e.g., Amiri)
149
  for sample in ds["Amiri"]:
150
  image_name = sample["image_name"]
 
155
  image_data = base64.b64decode(sample["image_base64"])
156
  image = Image.open(BytesIO(image_data))
157
 
158
+ # Display the image
159
+ plt.figure(figsize=(10, 10))
160
+ plt.imshow(image)
161
+ plt.axis('off')
162
+ plt.title(f"Font: {font_name}")
163
+ plt.show()
164
 
165
  # Print the details
166
  print(f"Image Name: {image_name}")
 
171
  break
172
  ```
173
 
174
+ ## Working with Multiple Fonts
175
+
176
+ To train or evaluate models across different font styles:
177
+
178
+ ```python
179
+ from datasets import load_dataset
180
+ import random
181
+
182
+ # Load the dataset
183
+ ds = load_dataset("riotu-lab/SAND")
184
+
185
+ # Select a balanced sample from multiple fonts
186
+ fonts_to_use = ["Amiri", "Arial", "Scheherazade_New", "Thabit", "Noto_Naskh_Arabic_UI"]
187
+ samples_per_font = 1000
188
+ combined_samples = []
189
+
190
+ for font in fonts_to_use:
191
+ # Get random samples from this font
192
+ font_samples = ds[font].shuffle(seed=42).select(range(samples_per_font))
193
+ combined_samples.extend([(sample, font) for sample in font_samples])
194
+
195
+ # Shuffle the combined samples
196
+ random.shuffle(combined_samples)
197
+
198
+ # Now you can use these samples for training or evaluation
199
+ for sample, font in combined_samples[:5]: # Just show first 5 as example
200
+ print(f"Font: {font}, Image: {sample['image_name']}")
201
+ ```
202
+
203
+
204
+ ## Applications
205
+
206
+ SAND is designed to support various Arabic text recognition tasks:
207
+
208
+ - Training and evaluating OCR models for Arabic text
209
+ - Developing vision-language models for document understanding
210
+ - Fine-tuning existing OCR models for better Arabic script recognition
211
+ - Benchmarking OCR performance across different fonts and layouts
212
+ - Research in Arabic natural language processing and computer vision
213
+ - Developing font-adaptive OCR systems that generalize across typographic styles
214
+
215
+ ## Citation
216
+
217
+ If you use SAND in your research, please cite:
218
+
219
+ ```bibtex
220
+ @misc{sand2025,
221
+ title={SAND: A Large-Scale Synthetic Arabic OCR Dataset for Vision-Language Models},
222
+ author={RIOTU Lab},
223
+ year={2025},
224
+ howpublished={\url{https://huggingface.co/datasets/riotu-lab/SAND}}
225
+ }
226
+ ```
227
+
228
+ ## Acknowledgments
229
 
230
+ The authors thank Prince Sultan University for their support in developing this dataset.