Datasets:
File size: 6,785 Bytes
ca9b5a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
license:
- cc-by-4.0
language:
- en
tags:
- remote-sensing
- planet
- change-detection
- spatiotemporal
- deep-learning
- video-compression
pretty_name: DynamicEarthNet-video
viewer: false
---
<div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 250px; margin: auto; background-color: #f9f9f9;">

<b><p>This dataset follows the TACO specification.</p></b>
</div>
<br>
# DynamicEarthNet-video: Daily PlanetFusion Image Cubes Compressed as Videos
## Description
### 📦 Dataset
DynamicEarthNet-video is a storage-efficient re-packaging of the original **DynamicEarthNet** collection.
The archive covers seventy-five 1024 × 1024 px regions (≈ 3 m GSD) across the globe, sampled daily from **1 January 2018 to 31 December 2019**. Each day is delivered as four-band PlanetFusion surface-reflectance images (B04 Red, B03 Green, B02 Blue, B8A Narrow-NIR). Monthly pixel-wise labels annotate seven land-cover classes: impervious, agriculture, forest, wetlands, bare soil, water and snow/ice.
All original GeoTIFF stacks (≈ 525 GB) are transcoded with **[xarrayvideo](https://github.com/IPL-UV/xarrayvideo)** to 12-bit H.265/HEVC, yielding dramatic size savings while preserving scientific fidelity:
| Version | Size | PSNR | Ratio |
| --------------------------- | ---------: | ------: | ----: |
| Raw GeoTIFF | 525 GB | — | 1 × |
| **DynamicEarthNet-video** | **8.5 GB** | 60.1 dB | 62 × |
| Extra-compressed (optional) | 2.1 GB | 54 dB | 249 × |
Extensive tests show that semantic change-segmentation scores obtained with U-TAE, U-ConvLSTM and 3D-UNet remain statistically unchanged (Δ mIoU ≤ 0.02 pp) when the compressed cubes replace the raw imagery.
The compact video format therefore removes I/O bottlenecks and enables:
* end-to-end training of sequence models directly from disk,
* rapid experimentation on 4-band daily time-series,
* efficient sharing of benchmarks for change detection and forecasting.
### 🛰️ Sensors
| Instrument | Platform | Bands | Native GSD | Role |
| ---------------- | --------------------------- | --------- | ---------- | -------------------- |
| **PlanetFusion** | PlanetScope / SkySat fusion | RGB + NIR | 3 m | Daily image sequence |
## 👤 Creators
| Name | Affiliation |
| ---------------------- | ------------------------------------ |
| Achraf Toker | Technical University of Munich (TUM) |
| Lisa Kondmann | TUM |
| Manuel Weber | TUM |
| Martin Eisenberger | TUM |
| Alfonso Camero | TUM |
| Jing Hu | TUM |
| André Pregel Höderlein | TUM |
| Çagatay Şenaras | Planet Labs PBC |
| Tyler Davis | Planet Labs PBC |
| Daniel Cremers | TUM |
| Guido Marchisio | Planet Labs PBC |
| Xiao Xiang Zhu | German Aerospace Center (DLR) / TUM |
| Laura Leal-Taixé | TUM |
## 📂 Original dataset
**Download (TUM Mediatum)**: [https://mediatum.ub.tum.de/1650201](https://mediatum.ub.tum.de/1650201)
## 🌮 Taco dataset
## ⚡ Reproducible Example
<a target="_blank" href="https://colab.research.google.com/drive/1V3kfJmbWJRVncQwbdqLKgDp4-adMVy4N?usp=sharing">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
```python
import tacoreader
import xarrayvideo as xav
import xarray as xr
import matplotlib.pyplot as plt
# Load tacos
table = tacoreader.load("tacofoundation:dynamicearthnet-video")
# Read a sample row
idx = 0
row = dataset.read(idx)
row_id = dataset.iloc[idx]["tortilla:id"]
```
<center>
<img src="assets/example.png" width="100%" />
</center>
## 🛰️ Sensor Information
Sensors: **planet**
## 🎯 Task
* **Semantic change detection** and **land-cover mapping** on daily 4-band sequences.
* Benchmarks include U-TAE, U-ConvLSTM, 3D-UNet (official splits A/B/C) .
* DynamicEarthNet-video can also serve for next-frame prediction and self-supervised representation learning on high-frequency optical data.
## 📚 References
### Publication 01
* **DOI**: [10.48550/arXiv.2203.12560](https://doi.org/10.48550/arXiv.2203.12560)
* **Summary**: Toker *et al.* introduce **DynamicEarthNet**, a benchmark of 75 daily 4-band PlanetFusion image cubes (3 m, 2018-2019) with monthly 7-class land-cover masks for semantic‐change segmentation. The paper establishes U-TAE, U-ConvLSTM and 3D-UNet baselines and proposes spatially blocked cross-validation to limit autocorrelation. ([arXiv][1])
* **BibTeX Citation**
```bibtex
@inproceedings{toker2022dynamicearthnet,
title = {DynamicEarthNet: Daily Multi-Spectral Satellite Dataset for Semantic Change Segmentation},
author = {Toker, Aykut and Kondmann, Leonie and Weber, Markus and Eisenberger, Marvin and Camero, Alejandro and others},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year = {2022},
doi = {10.48550/arXiv.2203.12560}
}
```
## 💬 Discussion
Chat with the maintainers: [https://huggingface.co/datasets/tacofoundation/DynamicEarthNet-video/discussions](https://huggingface.co/datasets/tacofoundation/DynamicEarthNet-video/discussions)
## 🤝 Data Providers
| Name | Role | URL |
| --------------- | ---------------- | ------------------------------------------------ |
| Planet Labs PBC | Imagery provider | [https://www.planet.com](https://www.planet.com) |
## 👥 Curators
| Name | Organization | URL |
| ------------------------ | ------------------------- | ---------------------------------------------------------------------------------------------- |
| Oscar J. Pellicer-Valero | Image Signal Processing (ISP) | [Google Scholar](https://scholar.google.com/citations?user=CCFJshwAAAAJ&hl=en) |
| Cesar Aybar | Image Signal Processing (ISP) | [Google Scholar](https://scholar.google.es/citations?user=rfF51ocAAAAJ&hl=es) |
| Julio Contreras | Image Signal Processing (ISP) | [GitHub](https://github.com/JulioContrerasH) | |