File size: 6,785 Bytes
ca9b5a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
license:
  - cc-by-4.0
language:
  - en
tags:
  - remote-sensing
  - planet
  - change-detection
  - spatiotemporal
  - deep-learning
  - video-compression
pretty_name: DynamicEarthNet-video
viewer: false
---


<div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 250px; margin: auto; background-color: #f9f9f9;">

![Dataset Image](assets/taco.png)
  
<b><p>This dataset follows the TACO specification.</p></b>
</div>

<br>


# DynamicEarthNet-video: Daily PlanetFusion Image Cubes Compressed as Videos

## Description


### 📦 Dataset

DynamicEarthNet-video is a storage-efficient re-packaging of the original **DynamicEarthNet** collection.
The archive covers seventy-five 1024 × 1024 px regions (≈ 3 m GSD) across the globe, sampled daily from **1 January 2018 to 31 December 2019**. Each day is delivered as four-band PlanetFusion surface-reflectance images (B04 Red, B03 Green, B02 Blue, B8A Narrow-NIR). Monthly pixel-wise labels annotate seven land-cover classes: impervious, agriculture, forest, wetlands, bare soil, water and snow/ice.

All original GeoTIFF stacks (≈ 525 GB) are transcoded with **[xarrayvideo](https://github.com/IPL-UV/xarrayvideo)** to 12-bit H.265/HEVC, yielding dramatic size savings while preserving scientific fidelity:

| Version                     |       Size |    PSNR | Ratio |
| --------------------------- | ---------: | ------: | ----: |
| Raw GeoTIFF                 |     525 GB |       — |   1 × |
| **DynamicEarthNet-video**   | **8.5 GB** | 60.1 dB |  62 × |
| Extra-compressed (optional) |     2.1 GB |   54 dB | 249 × |

Extensive tests show that semantic change-segmentation scores obtained with U-TAE, U-ConvLSTM and 3D-UNet remain statistically unchanged (Δ mIoU ≤ 0.02 pp) when the compressed cubes replace the raw imagery.

The compact video format therefore removes I/O bottlenecks and enables:

* end-to-end training of sequence models directly from disk,
* rapid experimentation on 4-band daily time-series,
* efficient sharing of benchmarks for change detection and forecasting.
### 🛰️ Sensors

| Instrument       | Platform                    | Bands     | Native GSD | Role                 |
| ---------------- | --------------------------- | --------- | ---------- | -------------------- |
| **PlanetFusion** | PlanetScope / SkySat fusion | RGB + NIR | 3 m        | Daily image sequence |


## 👤 Creators


| Name                   | Affiliation                          |
| ---------------------- | ------------------------------------ |
| Achraf Toker           | Technical University of Munich (TUM) |
| Lisa Kondmann          | TUM                                  |
| Manuel Weber           | TUM                                  |
| Martin Eisenberger     | TUM                                  |
| Alfonso Camero         | TUM                                  |
| Jing Hu                | TUM                                  |
| André Pregel Höderlein | TUM                                  |
| Çagatay Şenaras        | Planet Labs PBC                      |
| Tyler Davis            | Planet Labs PBC                      |
| Daniel Cremers         | TUM                                  |
| Guido Marchisio        | Planet Labs PBC                      |
| Xiao Xiang Zhu         | German Aerospace Center (DLR) / TUM  |
| Laura Leal-Taixé       | TUM                                  |


## 📂 Original dataset

**Download (TUM Mediatum)**: [https://mediatum.ub.tum.de/1650201](https://mediatum.ub.tum.de/1650201) 



## 🌮 Taco dataset

## ⚡ Reproducible Example

<a target="_blank" href="https://colab.research.google.com/drive/1V3kfJmbWJRVncQwbdqLKgDp4-adMVy4N?usp=sharing">
  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>

```python
import tacoreader
import xarrayvideo as xav
import xarray as xr
import matplotlib.pyplot as plt

# Load tacos
table = tacoreader.load("tacofoundation:dynamicearthnet-video")

# Read a sample row
idx = 0
row = dataset.read(idx)
row_id = dataset.iloc[idx]["tortilla:id"]
```

<center>
  <img src="assets/example.png" width="100%" />
</center>


## 🛰️ Sensor Information

Sensors: **planet**

## 🎯 Task


* **Semantic change detection** and **land-cover mapping** on daily 4-band sequences.
* Benchmarks include U-TAE, U-ConvLSTM, 3D-UNet (official splits A/B/C) .
* DynamicEarthNet-video can also serve for next-frame prediction and self-supervised representation learning on high-frequency optical data.

## 📚 References


### Publication 01

* **DOI**: [10.48550/arXiv.2203.12560](https://doi.org/10.48550/arXiv.2203.12560)
* **Summary**: Toker *et al.* introduce **DynamicEarthNet**, a benchmark of 75 daily 4-band PlanetFusion image cubes (3 m, 2018-2019) with monthly 7-class land-cover masks for semantic‐change segmentation. The paper establishes U-TAE, U-ConvLSTM and 3D-UNet baselines and proposes spatially blocked cross-validation to limit autocorrelation. ([arXiv][1])
* **BibTeX Citation**

```bibtex
@inproceedings{toker2022dynamicearthnet,
  title     = {DynamicEarthNet: Daily Multi-Spectral Satellite Dataset for Semantic Change Segmentation},
  author    = {Toker, Aykut and Kondmann, Leonie and Weber, Markus and Eisenberger, Marvin and Camero, Alejandro and others},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year      = {2022},
  doi       = {10.48550/arXiv.2203.12560}
}
```


## 💬 Discussion

Chat with the maintainers: [https://huggingface.co/datasets/tacofoundation/DynamicEarthNet-video/discussions](https://huggingface.co/datasets/tacofoundation/DynamicEarthNet-video/discussions)


## 🤝 Data Providers

| Name            | Role             | URL                                              |
| --------------- | ---------------- | ------------------------------------------------ |
| Planet Labs PBC | Imagery provider | [https://www.planet.com](https://www.planet.com) |

## 👥 Curators

| Name                     | Organization              | URL                                                                                            |
| ------------------------ | ------------------------- | ---------------------------------------------------------------------------------------------- |
| Oscar J. Pellicer-Valero | Image Signal Processing (ISP) | [Google Scholar](https://scholar.google.com/citations?user=CCFJshwAAAAJ&hl=en) |
| Cesar Aybar              | Image Signal Processing (ISP) | [Google Scholar](https://scholar.google.es/citations?user=rfF51ocAAAAJ&hl=es)                                         |
| Julio Contreras       | Image Signal Processing (ISP) | [GitHub](https://github.com/JulioContrerasH)         |