--- tags: - deep-learning - agriculture - vineyards - segmentation - logits license: mit datasets: - dataset_vineyardLogits_sigmoid task_categories: - image-segmentation --- # Vineyard Logits Sigmoid Dataset 🍇 ## 📌 Overview The **dataset_vineyardLogits_sigmoid** is a collection of **logits and labels** used for training and testing deep learning models in **precision agriculture**. 💡 **Key Details**: - **Binary classification task** with **one class**. - **Sigmoid activation function** used to output probabilities. - **Optimized for distinguishing vine plants from background elements**. This dataset provides valuable logits from models trained on vineyard segmentation tasks, enabling further research and development in precision agriculture. --- ## 📊 Hyperparameters The dataset consists of **three distinct datasets** used for **binary classification**. Below are the key hyperparameters used during training and testing: 1. **Split Ratio** - The dataset is split **80:20** (80% training, 20% testing). 2. **Learning Rate** - Initial **learning rate: 0.001**. 3. **Batch Sizes** - **Training batch size**: **30** - **Testing batch size**: **3** - This ensures efficient model training and evaluation. --- ## 📂 Dataset Structure ```plaintext dataset_vineyardLogits_sigmoid ├── deeplab_EARLY_FUSION_t1 ├── deeplab_EARLY_FUSION_t2 ├── deeplab_EARLY_FUSION_t3 ├── deeplab_GNDVI_t1 ├── deeplab_GNDVI_t2 ├── deeplab_GNDVI_t3 ├── deeplab_NDVI_t1 ├── deeplab_NDVI_t2 ├── deeplab_NDVI_t3 ├── deeplab_RGB_t1 ├── deeplab_RGB_t2 ├── deeplab_RGB_t3 ├── segnet_EARLY_FUSION_t1 ├── segnet_EARLY_FUSION_t2 ├── segnet_EARLY_FUSION_t3 ├── segnet_GNDVI_t1 ├── segnet_GNDVI_t2 ├── segnet_GNDVI_t3 ├── segnet_NDVI_t1 ├── segnet_NDVI_t2 ├── segnet_NDVI_t3 ├── segnet_RGB_t1 ├── segnet_RGB_t2 ├── segnet_RGB_t3 └── README.md ``` --- ## 📑 Contents - **model_modality_fold_n/pred_masks_train**: Logits from the training set. - **model_modality_fold_n/pred_masks_test**: Logits from the test set. --- ## 📸 Data Description - **Model Logits** The dataset consists of logits generated by **DeepLabV3** and **SegNet** during training and testing. These logits are **unnormalized raw scores** before applying the **sigmoid activation function**. - **Original Images** The images originate from aerial multispectral imagery collected from **three vineyards in central Portugal**: - **Quinta de Baixo (QTA)** - **ESAC** - **Valdoeiro (VAL)** ✅ **Captured at 240x240 resolution** using: - **X7 RGB camera** - **MicaSense Altum multispectral sensor** ✅ Includes **RGB and Near-Infrared (NIR) bands**, enabling vegetation indices like **NDVI** and **GNDVI**. ✅ **Ground-truth annotations available** for vineyard segmentation. 📌 **For more details**, refer to the dataset: [Cybonic, "DL Vineyard Segmentation Study," v1.0, GitHub, 2024](https://github.com/Cybonic/DL_vineyard_segmentation_study) --- ## 📥 How to Use ### **1️⃣ Load in Python** To load the dataset directly from Hugging Face: ```python from datasets import load_dataset dataset = load_dataset("wilgomoreira/dataset_vineyardLogits_sigmoid") print(dataset) ``` ### **2️⃣ Download Specific Files** To download a specific file: ```bash wget https://huggingface.co/datasets/seu-usuario/dataset_vineyardLogits_sigmoid/resolve/main/logits_train.npz ``` --- ## 🛠 License This dataset is released under the **MIT License**. Please make sure to comply with the license terms when using this dataset. --- ## 🙌 Acknowledgments This dataset was created by **Wilgo Cardoso** for research in **precision agriculture and deep learning segmentation**. --- ## 📧 Contact For any questions or collaborations, please contact: ✉️ **wilgo.moreira@isr.uc.pt**