--- library_name: peft language: - tr license: mit base_model: openai/whisper-large-v3-turbo tags: - asr - whisper - lora - Turkish - tr - generated_from_trainer datasets: - dcl-ai-team/CommonVoice-17_tr_bandpass_filter_telephonic metrics: - wer model-index: - name: v3-turbo-cv17-telephonic-lora results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: CommonVoice-17_tr_bandpass_filter_telephonic type: dcl-ai-team/CommonVoice-17_tr_bandpass_filter_telephonic metrics: - type: wer value: 14.208987174831321 name: Wer --- # v3-turbo-cv17-telephonic-lora This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the CommonVoice-17_tr_bandpass_filter_telephonic dataset. It achieves the following results on the evaluation set: - Loss: 0.1411 - Wer: 14.2090 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.454 | 0.1138 | 500 | 0.1633 | 15.3845 | | 0.1463 | 0.2276 | 1000 | 0.1525 | 14.9965 | | 0.1393 | 0.3414 | 1500 | 0.1482 | 14.7002 | | 0.1344 | 0.4552 | 2000 | 0.1466 | 14.4383 | | 0.1305 | 0.5690 | 2500 | 0.1442 | 14.3084 | | 0.1235 | 0.6828 | 3000 | 0.1427 | 14.2510 | | 0.129 | 0.7966 | 3500 | 0.1418 | 14.2434 | | 0.1259 | 0.9104 | 4000 | 0.1416 | 14.1765 | | 0.1169 | 1.0241 | 4500 | 0.1412 | 14.2185 | | 0.1103 | 1.1379 | 5000 | 0.1411 | 14.2090 | ### Framework versions - PEFT 0.14.0 - Transformers 4.48.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.21.0