hugosilva664 commited on
Commit
929076f
·
verified ·
1 Parent(s): 1e9c7c2

Update README.md

Browse files

Editing model card

Files changed (1) hide show
  1. README.md +143 -193
README.md CHANGED
@@ -1,199 +1,149 @@
1
  ---
 
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: mit
3
+ license_name: deepseek
4
+ license_link: LICENSE
5
+ pipeline_tag: any-to-any
6
  library_name: transformers
7
+ tags:
8
+ - muiltimodal
9
+ - text-to-image
10
+ - unified-model
11
  ---
12
 
13
+ ## 1. Introduction
14
 
15
+ Janus-Pro is a novel autoregressive framework that unifies multimodal understanding and generation.
16
+ It addresses the limitations of previous approaches by decoupling visual encoding into separate pathways, while still utilizing a single, unified transformer architecture for processing. The decoupling not only alleviates the conflict between the visual encoder’s roles in understanding and generation, but also enhances the framework’s flexibility.
17
+ Janus-Pro surpasses previous unified model and matches or exceeds the performance of task-specific models.
18
+ The simplicity, high flexibility, and effectiveness of Janus-Pro make it a strong candidate for next-generation unified multimodal models.
19
+
20
+ [**Github Repository**](https://github.com/deepseek-ai/Janus)
21
+
22
+ <div align="center">
23
+ <img alt="image" src="https://huggingface.co/deepseek-community/Janus-Pro-1B/resolve/main/janus_pro_teaser1.png" style="width:90%;">
24
+ </div>
25
+
26
+ <div align="center">
27
+ <img alt="image" src="https://huggingface.co/deepseek-community/Janus-Pro-1B/resolve/main/janus_pro_teaser2.png" style="width:90%;">
28
+ </div>
29
+
30
+
31
+ ### 2. Model Summary
32
+
33
+ Janus-Pro is a unified understanding and generation MLLM, which decouples visual encoding for multimodal understanding and generation.
34
+ Janus-Pro is constructed based on the DeepSeek-LLM-1.5b-base/DeepSeek-LLM-7b-base.
35
+
36
+ For multimodal understanding, it uses the [SigLIP-L](https://huggingface.co/timm/ViT-L-16-SigLIP-384) as the vision encoder, which supports 384 x 384 image input. For image generation, Janus-Pro uses the tokenizer from [here](https://github.com/FoundationVision/LlamaGen) with a downsample rate of 16.
37
 
38
+ ## 3. Usage Examples
39
+
40
+ ### Single Image Inference
41
+
42
+ Here is an example of visual understanding with a single image.
43
+
44
+ ```python
45
+ import torch
46
+ from PIL import Image
47
+ import requests
48
+ from transformers import JanusForConditionalGeneration, JanusProcessor
49
+
50
+ model_id = "deepseek-community/Janus-Pro-7B"
51
+
52
+ # Prepare input for generation
53
+ messages = [
54
+ {
55
+ "role": "user",
56
+ "content": [
57
+ {'type': 'image', 'url': 'http://images.cocodataset.org/val2017/000000039769.jpg'},
58
+ {'type': 'text', 'text': "What do you see in this image?"}
59
+ ]
60
+ },
61
+ ]
62
+
63
+ # Set generation mode to 'text' to perform text generation
64
+ processor = JanusProcessor.from_pretrained(model_id)
65
+ model = JanusForConditionalGeneration.from_pretrained(
66
+ model_id, torch_dtype=torch.bfloat16, device_map="auto"
67
+ )
68
+
69
+ inputs = processor.apply_chat_template(
70
+ messages,
71
+ add_generation_prompt=True,
72
+ generation_mode="text",
73
+ tokenize=True,
74
+ return_dict=True,
75
+ return_tensors="pt"
76
+ ).to(model.device, dtype=torch.bfloat16)
77
+
78
+ output = model.generate(**inputs, max_new_tokens=40, generation_mode='text', do_sample=True)
79
+ text = processor.decode(output[0], skip_special_tokens=True)
80
+ print(text)
81
+ ```
82
+
83
+ ## Text to Image generation
84
+ Janus can also generate images from prompts by simply setting the generation mode to `image` as shown below.
85
+
86
+ ```python
87
+ import torch
88
+ from transformers import JanusForConditionalGeneration, JanusProcessor
89
+
90
+ model_id = "deepseek-community/Janus-Pro-7B"
91
+
92
+ # Load processor and model
93
+ processor = JanusProcessor.from_pretrained(model_id)
94
+ model = JanusForConditionalGeneration.from_pretrained(
95
+ model_id, torch_dtype=torch.bfloat16, device_map="auto"
96
+ )
97
+
98
+ messages = [
99
+ {
100
+ "role": "user",
101
+ "content": [
102
+ {"type": "text", "text": "A dog running under the rain."}
103
+ ]
104
+ }
105
+ ]
106
+
107
+ # Apply chat template
108
+ prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
109
+ inputs = processor(
110
+ text=prompt,
111
+ generation_mode="image",
112
+ return_tensors="pt"
113
+ ).to(model.device, dtype=torch.bfloat16)
114
+
115
+ # Set number of images to generate
116
+ model.generation_config.num_return_sequences = 2
117
+
118
+ outputs = model.generate(
119
+ **inputs,
120
+ generation_mode="image",
121
+ do_sample=True,
122
+ use_cache=True
123
+ )
124
+
125
+ # Decode and save images
126
+ decoded_image = model.decode_image_tokens(outputs)
127
+ images = processor.postprocess(list(decoded_image.float()), return_tensors="PIL.Image.Image")
128
+
129
+ for i, image in enumerate(images["pixel_values"]):
130
+ image.save(f"image{i}.png")
131
+ ```
132
+
133
+ ## 4. License
134
+
135
+ This code repository is licensed under [the MIT License](https://github.com/deepseek-ai/DeepSeek-LLM/blob/HEAD/LICENSE-CODE). The use of Janus-Pro models is subject to [DeepSeek Model License](https://github.com/deepseek-ai/DeepSeek-LLM/blob/HEAD/LICENSE-MODEL).
136
+ ## 5. Citation
137
+
138
+ ```
139
+ @article{chen2025janus,
140
+ title={Janus-Pro: Unified Multimodal Understanding and Generation with Data and Model Scaling},
141
+ author={Chen, Xiaokang and Wu, Zhiyu and Liu, Xingchao and Pan, Zizheng and Liu, Wen and Xie, Zhenda and Yu, Xingkai and Ruan, Chong},
142
+ journal={arXiv preprint arXiv:2501.17811},
143
+ year={2025}
144
+ }
145
+ ```
146
+
147
+ ## 6. Contact
148
+
149
+ If you have any questions, please raise an issue or contact us at [[email protected]](mailto:[email protected]).