Update README.md
Browse filesEditing model card
README.md
CHANGED
@@ -1,199 +1,149 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
license_name: deepseek
|
4 |
+
license_link: LICENSE
|
5 |
+
pipeline_tag: any-to-any
|
6 |
library_name: transformers
|
7 |
+
tags:
|
8 |
+
- muiltimodal
|
9 |
+
- text-to-image
|
10 |
+
- unified-model
|
11 |
---
|
12 |
|
13 |
+
## 1. Introduction
|
14 |
|
15 |
+
Janus-Pro is a novel autoregressive framework that unifies multimodal understanding and generation.
|
16 |
+
It addresses the limitations of previous approaches by decoupling visual encoding into separate pathways, while still utilizing a single, unified transformer architecture for processing. The decoupling not only alleviates the conflict between the visual encoder’s roles in understanding and generation, but also enhances the framework’s flexibility.
|
17 |
+
Janus-Pro surpasses previous unified model and matches or exceeds the performance of task-specific models.
|
18 |
+
The simplicity, high flexibility, and effectiveness of Janus-Pro make it a strong candidate for next-generation unified multimodal models.
|
19 |
+
|
20 |
+
[**Github Repository**](https://github.com/deepseek-ai/Janus)
|
21 |
+
|
22 |
+
<div align="center">
|
23 |
+
<img alt="image" src="https://huggingface.co/deepseek-community/Janus-Pro-1B/resolve/main/janus_pro_teaser1.png" style="width:90%;">
|
24 |
+
</div>
|
25 |
+
|
26 |
+
<div align="center">
|
27 |
+
<img alt="image" src="https://huggingface.co/deepseek-community/Janus-Pro-1B/resolve/main/janus_pro_teaser2.png" style="width:90%;">
|
28 |
+
</div>
|
29 |
+
|
30 |
+
|
31 |
+
### 2. Model Summary
|
32 |
+
|
33 |
+
Janus-Pro is a unified understanding and generation MLLM, which decouples visual encoding for multimodal understanding and generation.
|
34 |
+
Janus-Pro is constructed based on the DeepSeek-LLM-1.5b-base/DeepSeek-LLM-7b-base.
|
35 |
+
|
36 |
+
For multimodal understanding, it uses the [SigLIP-L](https://huggingface.co/timm/ViT-L-16-SigLIP-384) as the vision encoder, which supports 384 x 384 image input. For image generation, Janus-Pro uses the tokenizer from [here](https://github.com/FoundationVision/LlamaGen) with a downsample rate of 16.
|
37 |
|
38 |
+
## 3. Usage Examples
|
39 |
+
|
40 |
+
### Single Image Inference
|
41 |
+
|
42 |
+
Here is an example of visual understanding with a single image.
|
43 |
+
|
44 |
+
```python
|
45 |
+
import torch
|
46 |
+
from PIL import Image
|
47 |
+
import requests
|
48 |
+
from transformers import JanusForConditionalGeneration, JanusProcessor
|
49 |
+
|
50 |
+
model_id = "deepseek-community/Janus-Pro-7B"
|
51 |
+
|
52 |
+
# Prepare input for generation
|
53 |
+
messages = [
|
54 |
+
{
|
55 |
+
"role": "user",
|
56 |
+
"content": [
|
57 |
+
{'type': 'image', 'url': 'http://images.cocodataset.org/val2017/000000039769.jpg'},
|
58 |
+
{'type': 'text', 'text': "What do you see in this image?"}
|
59 |
+
]
|
60 |
+
},
|
61 |
+
]
|
62 |
+
|
63 |
+
# Set generation mode to 'text' to perform text generation
|
64 |
+
processor = JanusProcessor.from_pretrained(model_id)
|
65 |
+
model = JanusForConditionalGeneration.from_pretrained(
|
66 |
+
model_id, torch_dtype=torch.bfloat16, device_map="auto"
|
67 |
+
)
|
68 |
+
|
69 |
+
inputs = processor.apply_chat_template(
|
70 |
+
messages,
|
71 |
+
add_generation_prompt=True,
|
72 |
+
generation_mode="text",
|
73 |
+
tokenize=True,
|
74 |
+
return_dict=True,
|
75 |
+
return_tensors="pt"
|
76 |
+
).to(model.device, dtype=torch.bfloat16)
|
77 |
+
|
78 |
+
output = model.generate(**inputs, max_new_tokens=40, generation_mode='text', do_sample=True)
|
79 |
+
text = processor.decode(output[0], skip_special_tokens=True)
|
80 |
+
print(text)
|
81 |
+
```
|
82 |
+
|
83 |
+
## Text to Image generation
|
84 |
+
Janus can also generate images from prompts by simply setting the generation mode to `image` as shown below.
|
85 |
+
|
86 |
+
```python
|
87 |
+
import torch
|
88 |
+
from transformers import JanusForConditionalGeneration, JanusProcessor
|
89 |
+
|
90 |
+
model_id = "deepseek-community/Janus-Pro-7B"
|
91 |
+
|
92 |
+
# Load processor and model
|
93 |
+
processor = JanusProcessor.from_pretrained(model_id)
|
94 |
+
model = JanusForConditionalGeneration.from_pretrained(
|
95 |
+
model_id, torch_dtype=torch.bfloat16, device_map="auto"
|
96 |
+
)
|
97 |
+
|
98 |
+
messages = [
|
99 |
+
{
|
100 |
+
"role": "user",
|
101 |
+
"content": [
|
102 |
+
{"type": "text", "text": "A dog running under the rain."}
|
103 |
+
]
|
104 |
+
}
|
105 |
+
]
|
106 |
+
|
107 |
+
# Apply chat template
|
108 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
109 |
+
inputs = processor(
|
110 |
+
text=prompt,
|
111 |
+
generation_mode="image",
|
112 |
+
return_tensors="pt"
|
113 |
+
).to(model.device, dtype=torch.bfloat16)
|
114 |
+
|
115 |
+
# Set number of images to generate
|
116 |
+
model.generation_config.num_return_sequences = 2
|
117 |
+
|
118 |
+
outputs = model.generate(
|
119 |
+
**inputs,
|
120 |
+
generation_mode="image",
|
121 |
+
do_sample=True,
|
122 |
+
use_cache=True
|
123 |
+
)
|
124 |
+
|
125 |
+
# Decode and save images
|
126 |
+
decoded_image = model.decode_image_tokens(outputs)
|
127 |
+
images = processor.postprocess(list(decoded_image.float()), return_tensors="PIL.Image.Image")
|
128 |
+
|
129 |
+
for i, image in enumerate(images["pixel_values"]):
|
130 |
+
image.save(f"image{i}.png")
|
131 |
+
```
|
132 |
+
|
133 |
+
## 4. License
|
134 |
+
|
135 |
+
This code repository is licensed under [the MIT License](https://github.com/deepseek-ai/DeepSeek-LLM/blob/HEAD/LICENSE-CODE). The use of Janus-Pro models is subject to [DeepSeek Model License](https://github.com/deepseek-ai/DeepSeek-LLM/blob/HEAD/LICENSE-MODEL).
|
136 |
+
## 5. Citation
|
137 |
+
|
138 |
+
```
|
139 |
+
@article{chen2025janus,
|
140 |
+
title={Janus-Pro: Unified Multimodal Understanding and Generation with Data and Model Scaling},
|
141 |
+
author={Chen, Xiaokang and Wu, Zhiyu and Liu, Xingchao and Pan, Zizheng and Liu, Wen and Xie, Zhenda and Yu, Xingkai and Ruan, Chong},
|
142 |
+
journal={arXiv preprint arXiv:2501.17811},
|
143 |
+
year={2025}
|
144 |
+
}
|
145 |
+
```
|
146 |
+
|
147 |
+
## 6. Contact
|
148 |
+
|
149 |
+
If you have any questions, please raise an issue or contact us at [[email protected]](mailto:[email protected]).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|