Text-to-Speech
Vietnamese
vietnamese
female
male
voice-cloning
EraX-Smile-Female-F5-V1.0 / f5tts_wrapper.py
erax's picture
Rename model/f5tts_wrapper.py to f5tts_wrapper.py
3b13719 verified
raw
history blame
22.4 kB
import os
import torch
import torchaudio
import numpy as np
from pathlib import Path
from typing import Optional, Union, List, Tuple, Dict
from cached_path import cached_path
from hydra.utils import get_class
from omegaconf import OmegaConf
from importlib.resources import files
from pydub import AudioSegment, silence
from f5_tts.model import CFM
from f5_tts.model.utils import (
get_tokenizer,
convert_char_to_pinyin,
)
from f5_tts.infer.utils_infer import (
chunk_text,
load_vocoder,
transcribe,
initialize_asr_pipeline,
)
class F5TTSWrapper:
"""
A wrapper class for F5-TTS that preprocesses reference audio once
and allows for repeated TTS generation.
"""
def __init__(
self,
model_name: str = "F5TTS_v1_Base",
ckpt_path: Optional[str] = None,
vocab_file: Optional[str] = None,
vocoder_name: str = "vocos",
use_local_vocoder: bool = False,
vocoder_path: Optional[str] = None,
device: Optional[str] = None,
hf_cache_dir: Optional[str] = None,
target_sample_rate: int = 24000,
n_mel_channels: int = 100,
hop_length: int = 256,
win_length: int = 1024,
n_fft: int = 1024,
ode_method: str = "euler",
use_ema: bool = True,
):
"""
Initialize the F5-TTS wrapper with model configuration.
Args:
model_name: Name of the F5-TTS model variant (e.g., "F5TTS_v1_Base")
ckpt_path: Path to the model checkpoint file. If None, will use default path.
vocab_file: Path to the vocab file. If None, will use default.
vocoder_name: Name of the vocoder to use ("vocos" or "bigvgan")
use_local_vocoder: Whether to use a local vocoder or download from HF
vocoder_path: Path to the local vocoder. Only used if use_local_vocoder is True.
device: Device to run the model on. If None, will automatically determine.
hf_cache_dir: Directory to cache HuggingFace models
target_sample_rate: Target sample rate for audio
n_mel_channels: Number of mel channels
hop_length: Hop length for the mel spectrogram
win_length: Window length for the mel spectrogram
n_fft: FFT size for the mel spectrogram
ode_method: ODE method for sampling ("euler" or "midpoint")
use_ema: Whether to use EMA weights from the checkpoint
"""
# Set device
if device is None:
self.device = (
"cuda" if torch.cuda.is_available()
else "xpu" if torch.xpu.is_available()
else "mps" if torch.backends.mps.is_available()
else "cpu"
)
else:
self.device = device
# Audio processing parameters
self.target_sample_rate = target_sample_rate
self.n_mel_channels = n_mel_channels
self.hop_length = hop_length
self.win_length = win_length
self.n_fft = n_fft
self.mel_spec_type = vocoder_name
# Sampling parameters
self.ode_method = ode_method
# Initialize ASR for transcription if needed
initialize_asr_pipeline(device=self.device)
# Load model configuration
if ckpt_path is None:
repo_name = "F5-TTS"
ckpt_step = 1250000
ckpt_type = "safetensors"
# Adjust for previous models
if model_name == "F5TTS_Base":
if vocoder_name == "vocos":
ckpt_step = 1200000
elif vocoder_name == "bigvgan":
model_name = "F5TTS_Base_bigvgan"
ckpt_type = "pt"
elif model_name == "E2TTS_Base":
repo_name = "E2-TTS"
ckpt_step = 1200000
ckpt_path = str(cached_path(f"hf://SWivid/{repo_name}/{model_name}/model_{ckpt_step}.{ckpt_type}"))
# Load model configuration
config_path = str(files("f5_tts").joinpath(f"configs/{model_name}.yaml"))
model_cfg = OmegaConf.load(config_path)
model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
model_arc = model_cfg.model.arch
# Load tokenizer
if vocab_file is None:
vocab_file = str(files("f5_tts").joinpath("infer/examples/vocab.txt"))
tokenizer_type = "custom"
self.vocab_char_map, vocab_size = get_tokenizer(vocab_file, tokenizer_type)
# Create model
self.model = CFM(
transformer=model_cls(**model_arc, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
mel_spec_kwargs=dict(
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
n_mel_channels=n_mel_channels,
target_sample_rate=target_sample_rate,
mel_spec_type=vocoder_name,
),
odeint_kwargs=dict(
method=ode_method,
),
vocab_char_map=self.vocab_char_map,
).to(self.device)
# Load checkpoint
dtype = torch.float32 if vocoder_name == "bigvgan" else None
self._load_checkpoint(self.model, ckpt_path, dtype=dtype, use_ema=use_ema)
# Load vocoder
if vocoder_path is None:
if vocoder_name == "vocos":
vocoder_path = "../checkpoints/vocos-mel-24khz"
elif vocoder_name == "bigvgan":
vocoder_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
self.vocoder = load_vocoder(
vocoder_name=vocoder_name,
is_local=use_local_vocoder,
local_path=vocoder_path,
device=self.device,
hf_cache_dir=hf_cache_dir
)
# Storage for reference data
self.ref_audio_processed = None
self.ref_text = None
self.ref_audio_len = None
# Default inference parameters
self.target_rms = 0.1
self.cross_fade_duration = 0.15
self.nfe_step = 32
self.cfg_strength = 2.0
self.sway_sampling_coef = -1.0
self.speed = 1.0
self.fix_duration = None
def _load_checkpoint(self, model, ckpt_path, dtype=None, use_ema=True):
"""
Load model checkpoint with proper handling of different checkpoint formats.
Args:
model: The model to load weights into
ckpt_path: Path to the checkpoint file
dtype: Data type for model weights
use_ema: Whether to use EMA weights from the checkpoint
Returns:
Loaded model
"""
if dtype is None:
dtype = (
torch.float16
if "cuda" in self.device
and torch.cuda.get_device_properties(self.device).major >= 7
and not torch.cuda.get_device_name().endswith("[ZLUDA]")
else torch.float32
)
model = model.to(dtype)
ckpt_type = ckpt_path.split(".")[-1]
if ckpt_type == "safetensors":
from safetensors.torch import load_file
checkpoint = load_file(ckpt_path, device=self.device)
else:
checkpoint = torch.load(ckpt_path, map_location=self.device, weights_only=True)
if use_ema:
if ckpt_type == "safetensors":
checkpoint = {"ema_model_state_dict": checkpoint}
checkpoint["model_state_dict"] = {
k.replace("ema_model.", ""): v
for k, v in checkpoint["ema_model_state_dict"].items()
if k not in ["initted", "step"]
}
# patch for backward compatibility
for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]:
if key in checkpoint["model_state_dict"]:
del checkpoint["model_state_dict"][key]
model.load_state_dict(checkpoint["model_state_dict"])
else:
if ckpt_type == "safetensors":
checkpoint = {"model_state_dict": checkpoint}
model.load_state_dict(checkpoint["model_state_dict"])
del checkpoint
torch.cuda.empty_cache()
return model.to(self.device)
def preprocess_reference(self, ref_audio_path: str, ref_text: str = "", clip_short: bool = True):
"""
Preprocess the reference audio and text, storing them for later use.
Args:
ref_audio_path: Path to the reference audio file
ref_text: Text transcript of reference audio. If empty, will auto-transcribe.
clip_short: Whether to clip long audio to shorter segments
Returns:
Tuple of processed audio and text
"""
print("Converting audio...")
# Load audio file
aseg = AudioSegment.from_file(ref_audio_path)
if clip_short:
# 1. try to find long silence for clipping
non_silent_segs = silence.split_on_silence(
aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000, seek_step=10
)
non_silent_wave = AudioSegment.silent(duration=0)
for non_silent_seg in non_silent_segs:
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 12000:
print("Audio is over 12s, clipping short. (1)")
break
non_silent_wave += non_silent_seg
# 2. try to find short silence for clipping if 1. failed
if len(non_silent_wave) > 12000:
non_silent_segs = silence.split_on_silence(
aseg, min_silence_len=100, silence_thresh=-40, keep_silence=1000, seek_step=10
)
non_silent_wave = AudioSegment.silent(duration=0)
for non_silent_seg in non_silent_segs:
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 12000:
print("Audio is over 12s, clipping short. (2)")
break
non_silent_wave += non_silent_seg
aseg = non_silent_wave
# 3. if no proper silence found for clipping
if len(aseg) > 12000:
aseg = aseg[:12000]
print("Audio is over 12s, clipping short. (3)")
# Remove silence edges
aseg = self._remove_silence_edges(aseg) + AudioSegment.silent(duration=50)
# Export to temporary file and load as tensor
import tempfile
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
aseg.export(tmp_file.name, format="wav")
processed_audio_path = tmp_file.name
# Transcribe if needed
if not ref_text.strip():
print("No reference text provided, transcribing reference audio...")
ref_text = transcribe(processed_audio_path)
else:
print("Using custom reference text...")
# Ensure ref_text ends with proper punctuation
if not ref_text.endswith(". ") and not ref_text.endswith("。"):
if ref_text.endswith("."):
ref_text += " "
else:
ref_text += ". "
print("\nReference text:", ref_text)
# Load and process audio
audio, sr = torchaudio.load(processed_audio_path)
if audio.shape[0] > 1: # Convert stereo to mono
audio = torch.mean(audio, dim=0, keepdim=True)
# Normalize volume
rms = torch.sqrt(torch.mean(torch.square(audio)))
if rms < self.target_rms:
audio = audio * self.target_rms / rms
# Resample if needed
if sr != self.target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, self.target_sample_rate)
audio = resampler(audio)
# Move to device
audio = audio.to(self.device)
# Store reference data
self.ref_audio_processed = audio
self.ref_text = ref_text
self.ref_audio_len = audio.shape[-1] // self.hop_length
# Remove temporary file
os.unlink(processed_audio_path)
return audio, ref_text
def _remove_silence_edges(self, audio, silence_threshold=-42):
"""
Remove silence from the start and end of audio.
Args:
audio: AudioSegment to process
silence_threshold: dB threshold to consider as silence
Returns:
Processed AudioSegment
"""
# Remove silence from the start
non_silent_start_idx = silence.detect_leading_silence(audio, silence_threshold=silence_threshold)
audio = audio[non_silent_start_idx:]
# Remove silence from the end
non_silent_end_duration = audio.duration_seconds
for ms in reversed(audio):
if ms.dBFS > silence_threshold:
break
non_silent_end_duration -= 0.001
trimmed_audio = audio[: int(non_silent_end_duration * 1000)]
return trimmed_audio
def generate(
self,
text: str,
output_path: Optional[str] = None,
nfe_step: Optional[int] = None,
cfg_strength: Optional[float] = None,
sway_sampling_coef: Optional[float] = None,
speed: Optional[float] = None,
fix_duration: Optional[float] = None,
cross_fade_duration: Optional[float] = None,
return_numpy: bool = False,
return_spectrogram: bool = False,
) -> Union[str, Tuple[np.ndarray, int], Tuple[np.ndarray, int, np.ndarray]]:
"""
Generate speech for the given text using the stored reference audio.
Args:
text: Text to synthesize
output_path: Path to save the generated audio. If None, won't save.
nfe_step: Number of function evaluation steps
cfg_strength: Classifier-free guidance strength
sway_sampling_coef: Sway sampling coefficient
speed: Speed of generated audio
fix_duration: Fixed duration in seconds
cross_fade_duration: Duration of cross-fade between segments
return_numpy: If True, returns the audio as a numpy array
return_spectrogram: If True, also returns the spectrogram
Returns:
If output_path provided: path to output file
If return_numpy=True: tuple of (audio_array, sample_rate)
If return_spectrogram=True: tuple of (audio_array, sample_rate, spectrogram)
"""
if self.ref_audio_processed is None or self.ref_text is None:
raise ValueError("Reference audio not preprocessed. Call preprocess_reference() first.")
# Use default values if not specified
nfe_step = nfe_step if nfe_step is not None else self.nfe_step
cfg_strength = cfg_strength if cfg_strength is not None else self.cfg_strength
sway_sampling_coef = sway_sampling_coef if sway_sampling_coef is not None else self.sway_sampling_coef
speed = speed if speed is not None else self.speed
fix_duration = fix_duration if fix_duration is not None else self.fix_duration
cross_fade_duration = cross_fade_duration if cross_fade_duration is not None else self.cross_fade_duration
# Split the input text into batches
audio_len = self.ref_audio_processed.shape[-1] / self.target_sample_rate
max_chars = int(len(self.ref_text.encode("utf-8")) / audio_len * (22 - audio_len))
text_batches = chunk_text(text, max_chars=max_chars)
for i, text_batch in enumerate(text_batches):
print(f"Text batch {i}: {text_batch}")
print("\n")
# Generate audio for each batch
generated_waves = []
spectrograms = []
for text_batch in text_batches:
# Adjust speed for very short texts
local_speed = speed
if len(text_batch.encode("utf-8")) < 10:
local_speed = 0.3
# Prepare the text
text_list = [self.ref_text + text_batch]
final_text_list = convert_char_to_pinyin(text_list)
# Calculate duration
if fix_duration is not None:
duration = int(fix_duration * self.target_sample_rate / self.hop_length)
else:
# Calculate duration based on text length
ref_text_len = len(self.ref_text.encode("utf-8"))
gen_text_len = len(text_batch.encode("utf-8"))
duration = self.ref_audio_len + int(self.ref_audio_len / ref_text_len * gen_text_len / local_speed)
# Generate audio
with torch.inference_mode():
generated, _ = self.model.sample(
cond=self.ref_audio_processed,
text=final_text_list,
duration=duration,
steps=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
)
# Process the generated mel spectrogram
generated = generated.to(torch.float32)
generated = generated[:, self.ref_audio_len:, :]
generated = generated.permute(0, 2, 1)
# Convert to audio
if self.mel_spec_type == "vocos":
generated_wave = self.vocoder.decode(generated)
elif self.mel_spec_type == "bigvgan":
generated_wave = self.vocoder(generated)
# Normalize volume if needed
rms = torch.sqrt(torch.mean(torch.square(self.ref_audio_processed)))
if rms < self.target_rms:
generated_wave = generated_wave * rms / self.target_rms
# Convert to numpy and append to list
generated_wave = generated_wave.squeeze().cpu().numpy()
generated_waves.append(generated_wave)
# Store spectrogram if needed
if return_spectrogram or output_path is not None:
spectrograms.append(generated.squeeze().cpu().numpy())
# Combine all segments
if generated_waves:
if cross_fade_duration <= 0:
# Simply concatenate
final_wave = np.concatenate(generated_waves)
else:
# Cross-fade between segments
final_wave = generated_waves[0]
for i in range(1, len(generated_waves)):
prev_wave = final_wave
next_wave = generated_waves[i]
# Calculate cross-fade samples
cross_fade_samples = int(cross_fade_duration * self.target_sample_rate)
cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))
if cross_fade_samples <= 0:
# No overlap possible, concatenate
final_wave = np.concatenate([prev_wave, next_wave])
continue
# Create cross-fade
prev_overlap = prev_wave[-cross_fade_samples:]
next_overlap = next_wave[:cross_fade_samples]
fade_out = np.linspace(1, 0, cross_fade_samples)
fade_in = np.linspace(0, 1, cross_fade_samples)
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
final_wave = np.concatenate([
prev_wave[:-cross_fade_samples],
cross_faded_overlap,
next_wave[cross_fade_samples:]
])
# Combine spectrograms if needed
if return_spectrogram or output_path is not None:
combined_spectrogram = np.concatenate(spectrograms, axis=1)
# Save to file if path provided
if output_path is not None:
output_dir = os.path.dirname(output_path)
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir)
# Save audio
torchaudio.save(output_path,
torch.tensor(final_wave).unsqueeze(0),
self.target_sample_rate)
# Save spectrogram if needed
if return_spectrogram:
spectrogram_path = os.path.splitext(output_path)[0] + '_spec.png'
self._save_spectrogram(combined_spectrogram, spectrogram_path)
if not return_numpy:
return output_path
# Return as requested
if return_spectrogram:
return final_wave, self.target_sample_rate, combined_spectrogram
else:
return final_wave, self.target_sample_rate
else:
raise RuntimeError("No audio generated")
def _save_spectrogram(self, spectrogram, path):
"""Save spectrogram as image"""
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 4))
plt.imshow(spectrogram, origin="lower", aspect="auto")
plt.colorbar()
plt.savefig(path)
plt.close()
def get_current_audio_length(self):
"""Get the length of the reference audio in seconds"""
if self.ref_audio_processed is None:
return 0
return self.ref_audio_processed.shape[-1] / self.target_sample_rate