faycadnz commited on
Commit
7f59818
·
1 Parent(s): cb74ae3

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -0
README.md ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - IMF
6
+ - sentiment
7
+ - BERT
8
+ widget:
9
+ - text: The implementation of coherent policies has decisively transformed the performance of the Turkish economy.
10
+ ---
11
+
12
+ **IMFBERT** is built by fine-tuning the
13
+ [siebert/sentiment-roberta-large-english](https://huggingface.co/siebert/sentiment-roberta-large-english)
14
+ model with IMF (International Monetary Fund)
15
+ Executive Board meeting minutes (around 150,000 sentences).
16
+ This model is suitable for English. Labels in this model are:
17
+ - 1 : Positive
18
+ - 0 : Negative
19
+
20
+
21
+ # Example Usage
22
+
23
+ ```
24
+ from transformers import pipeline
25
+ sentiment_classification = pipeline(task = 'sentiment-analysis', model = 'faycadnz/IMFBERT_binary')
26
+ sentiment_classification('They remain vulnerable to external shocks.')
27
+ ```
28
+
29
+
30
+ # Citation
31
+
32
+ If you find this repository useful in your research, please cite the following paper:
33
+
34
+ <ins>APA format</ins>:
35
+
36
+ > Deniz, A., Angin, M., & Angin, P. (2022, May). Understanding IMF Decision-Making with Sentiment Analysis. In 2022 30th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
37
+
38
+ <ins>Bibtex format</ins>:
39
+
40
+ ```
41
+ @inproceedings{deniz2022understanding,
42
+ title={Understanding IMF Decision-Making with Sentiment Analysis},
43
+ author={Deniz, Ay{\c{c}}a and Angin, Merih and Angin, Pelin},
44
+ booktitle={2022 30th Signal Processing and Communications Applications Conference (SIU)},
45
+ pages={1--4},
46
+ year={2022},
47
+ organization={IEEE}
48
+ }
49
+ ```