fushh7 commited on
Commit
c5523ed
·
verified ·
1 Parent(s): 94f6be4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +131 -3
README.md CHANGED
@@ -1,3 +1,131 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ ## LLMDet: Learning Strong Open-Vocabulary Object Detectors under the Supervision of Large Language Models
4
+
5
+ This is the official PyTorch implementation of [LLMDet](). Please see our [GitHub](https://github.com/iSEE-Laboratory/LLMDet).
6
+
7
+ ### 1 Introduction
8
+
9
+ <img src="./compare_result.png" style="zoom:30%;" />
10
+
11
+ Recent open-vocabulary detectors achieve promising performance with abundant region-level annotated data. In this work, we show that an open-vocabulary detector co-training with a large language model by generating image-level detailed captions for each image can further improve performance. To achieve the goal, we first collect a dataset, GroundingCap-1M, wherein each image is accompanied by associated grounding labels and an image-level detailed caption. With this dataset, we finetune an open-vocabulary detector with training objectives including a standard grounding loss and a caption generation loss. We take advantage of a large language model to generate both region-level short captions for each region of interest and image-level long captions for the whole image. Under the supervision of the large language model, the resulting detector, LLMDet, outperforms the baseline by a clear margin, enjoying superior open-vocabulary ability. Further, we show that the improved LLMDet can in turn build a stronger large multi-modal model, achieving mutual benefits.
12
+
13
+ ### 2 Model Zoo
14
+
15
+ | Model | AP<sup>mini</sup> | AP<sub>r</sub> | AP<sub>c</sub> | AP<sub>f</sub> | AP<sup>val</sup> | AP<sub>r</sub> | AP<sub>c</sub> | AP<sub>f</sub> |
16
+ | ----------------------------- | ----------------- | -------------- | -------------- | -------------- | ---------------- | -------------- | -------------- | -------------- |
17
+ | LLMDet Swin-T only p5 | 44.5 | 38.6 | 39.3 | 50.3 | 34.6 | 25.5 | 29.9 | 43.8 |
18
+ | LLMDet Swin-T | 44.7 | 37.3 | 39.5 | 50.7 | 34.9 | 26.0 | 30.1 | 44.3 |
19
+ | LLMDet Swin-B | 48.3 | 40.8 | 43.1 | 54.3 | 38.5 | 28.2 | 34.3 | 47.8 |
20
+ | LLMDet Swin-L | 51.1 | 45.1 | 46.1 | 56.6 | 42.0 | 31.6 | 38.8 | 50.2 |
21
+ | LLMDet Swin-L (chunk size 80) | 52.4 | 44.3 | 48.8 | 57.1 | 43.2 | 32.8 | 40.5 | 50.8 |
22
+
23
+ **NOTE:**
24
+
25
+ 1. AP<sup>mini</sup>: evaluated on LVIS `minival`.
26
+ 2. AP<sup>val</sup>: evaluated on LVIS `val 1.0`.
27
+ 3. AP is fixed AP.
28
+ 4. All the checkpoints and logs can be found in [huggingface](https://huggingface.co/fushh7/LLMDet) and [modelscope](https://modelscope.cn/models/fushh7/LLMDet).
29
+ 5. Other benchmarks are tested using `LLMDet Swin-T only p5`.
30
+
31
+ ### 3 Our Experiment Environment
32
+
33
+ Note: other environments may also work.
34
+
35
+ - pytorch==2.2.1+cu121
36
+ - transformers==4.37.2
37
+ - numpy==1.22.2 (numpy should be lower than 1.24, recommend for numpy==1.23 or 1.22)
38
+ - mmcv==2.2.0, mmengine==0.10.5
39
+ - timm, deepspeed, pycocotools, lvis, jsonlines, fairscale, nltk, peft, wandb
40
+
41
+ ### 4 Data Preparation
42
+
43
+ ```
44
+ |--huggingface
45
+ | |--bert-base-uncased
46
+ | |--siglip-so400m-patch14-384
47
+ | |--my_llava-onevision-qwen2-0.5b-ov-2
48
+ | |--mm_grounding_dino
49
+ | | |--grounding_dino_swin-t_pretrain_obj365_goldg_grit9m_v3det_20231204_095047-b448804b.pth
50
+ | | |--grounding_dino_swin-b_pretrain_obj365_goldg_v3de-f83eef00.pth
51
+ | | |--grounding_dino_swin-l_pretrain_obj365_goldg-34dcdc53.pth
52
+ |--grounding_data
53
+ | |--coco
54
+ | | |--annotations
55
+ | | | |--instances_train2017_vg_merged6.jsonl
56
+ | | | |--instances_val2017.json
57
+ | | | |--lvis_v1_minival_inserted_image_name.json
58
+ | | | |--lvis_od_val.json
59
+ | | |--train2017
60
+ | | |--val2017
61
+ | |--flickr30k_entities
62
+ | | |--flickr_train_vg7.jsonl
63
+ | | |--flickr30k_images
64
+ | |--gqa
65
+ | | |--gqa_train_vg7.jsonl
66
+ | | |--images
67
+ | |--llava_cap
68
+ | | |--LLaVA-ReCap-558K_tag_box_vg7.jsonl
69
+ | | |--images
70
+ | |--v3det
71
+ | | |--annotations
72
+ | | | |--v3det_2023_v1_train_vg7.jsonl
73
+ | | |--images
74
+ |--LLMDet (code)
75
+ ```
76
+
77
+ - pretrained models
78
+ - `bert-base-uncased`, `siglip-so400m-patch14-384` are directly downloaded from huggingface.
79
+ - To fully reproduce our results, please download `my_llava-onevision-qwen2-0.5b-ov-2` from [huggingface](https://huggingface.co/fushh7/LLMDet) or [modelscope](https://modelscope.cn/models/fushh7/LLMDet), which is slightly fine-tuned by us in early exploration. We find that the original `llava-onevision-qwen2-0.5b-ov` is still OK to reproduce our results but users should pretrain the projector.
80
+ - Since LLMDet is fine-tuned from`mm_grounding_dino`, please download their checkpoints [swin-t](https://download.openmmlab.com/mmdetection/v3.0/mm_grounding_dino/grounding_dino_swin-t_pretrain_obj365_goldg_grit9m_v3det/grounding_dino_swin-t_pretrain_obj365_goldg_grit9m_v3det_20231204_095047-b448804b.pth), [swin-b](https://download.openmmlab.com/mmdetection/v3.0/mm_grounding_dino/grounding_dino_swin-b_pretrain_obj365_goldg_v3det/grounding_dino_swin-b_pretrain_obj365_goldg_v3de-f83eef00.pth), [swin-l](https://download.openmmlab.com/mmdetection/v3.0/mm_grounding_dino/grounding_dino_swin-l_pretrain_obj365_goldg/grounding_dino_swin-l_pretrain_obj365_goldg-34dcdc53.pth) for training.
81
+ - grounding data (GroundingCap-1M)
82
+ - `coco`: You can download it from the [COCO](https://cocodataset.org/) official website or from [opendatalab](https://opendatalab.com/OpenDataLab/COCO_2017).
83
+ - `lvis`: LVIS shares the same images with COCO. You can download the minival annotation file from [here](https://huggingface.co/GLIPModel/GLIP/blob/main/lvis_v1_minival_inserted_image_name.json), and the val 1.0 annotation file from [here](https://huggingface.co/GLIPModel/GLIP/blob/main/lvis_od_val.json).
84
+ - `flickr30k_entities`:[Flickr30k images](http://shannon.cs.illinois.edu/DenotationGraph/).
85
+ - `gqa`: [GQA images](https://nlp.stanford.edu/data/gqa/images.zip).
86
+ - `llava_cap`:[images](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain/blob/main/images.zip) .
87
+ - `v3det`:The V3Det dataset can be downloaded from [opendatalab](https://opendatalab.com/V3Det/V3Det).
88
+ - Our generated jsonls can be found [huggingface](https://huggingface.co/fushh7/LLMDet) or [modelscope](https://modelscope.cn/models/fushh7/LLMDet).
89
+ - For other evalation datasets, please refer to [MM-GDINO](https://github.com/open-mmlab/mmdetection/blob/main/configs/mm_grounding_dino/dataset_prepare.md).
90
+
91
+ ### 5 Usage
92
+
93
+ #### 5.1 Training
94
+
95
+ ```
96
+ bash dist_train.sh configs/grounding_dino_swin_t.py 8 --amp
97
+ ```
98
+
99
+ #### 5.2 Evaluation
100
+
101
+ ```
102
+ bash dist_test.sh configs/grounding_dino_swin_t.py tiny.pth 8
103
+ ```
104
+
105
+ ### 6 License
106
+
107
+ LLMDet is released under the Apache 2.0 license. Please see the LICENSE file for more information.
108
+
109
+ ### 7 Bibtex
110
+
111
+ If you find our work helpful for your research, please consider citing our paper (Coming very soon!).
112
+
113
+ ```
114
+ @article{fu2025llmdet,
115
+ title={Frozen-DETR: Enhancing DETR with Image Understanding from Frozen Foundation Models},
116
+ author={Fu, Shenghao and Yang, Qize and Mo, Qijie and Yan, Junkai and Wei, Xihan and Meng, Jingke and Xie, Xiaohua and Zheng, Wei-Shi},
117
+ }
118
+ ```
119
+
120
+ ### 8 Acknowledgement
121
+
122
+ Our LLMDet is heavily inspired by many outstanding prior works, including
123
+
124
+ - [MM-Grounding-DINO](https://github.com/open-mmlab/mmdetection/tree/main/configs/mm_grounding_dino)
125
+ - [LLaVA1.5](https://github.com/haotian-liu/LLaVA)
126
+ - [LLaVA OneVision](https://github.com/LLaVA-VL/LLaVA-NeXT)
127
+ - [ShareGPT4V](https://github.com/ShareGPT4Omni/ShareGPT4V)
128
+ - [ASv2](https://github.com/OpenGVLab/all-seeing)
129
+ - [RAM](https://github.com/xinyu1205/recognize-anything)
130
+
131
+ Thank the authors of above projects for open-sourcing their assets!