--- license: mit language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara base_model: - Qwen/Qwen2.5-7B-Instruct tags: - medical --- ## Model Details This model has been LoRA‑fine‑tuned on Qwen2.5‑7B‑Instruct. In the future, reinforcement learning training may be carried out based on this model, such as DPRO algorithm, etc. ### Base Model Sources [optional] https://huggingface.co/Qwen/Qwen2.5-7B-Instruct ## How to Get Started with the Model ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "ggbaobao/medc_llm_based_on_qwen2.5" model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", torch_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "猩红热多在发热后多久出现皮疹,请从以下选项中选择:12小时之内, 12~48小时, 60~72小时, 84~96小时, 大于96小时" messages = [ {"role": "system", "content": "You are Qwen, You are a helpful assistant."}, {"role": "user", "content": prompt}, ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512, do_sample=True ) generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ``` ## Training Details ```python lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.1 ) training_args = TrainingArguments( output_dir="./results_final1", learning_rate=7e-5, per_device_train_batch_size=2, per_device_eval_batch_size=2, gradient_accumulation_steps=1, # 梯度累积 num_train_epochs=2, evaluation_strategy="steps", # evaluate_steps=1, save_strategy="steps", save_steps=10, logging_steps=10, logging_dir="./logs1", bf16=True, # 混合精度训练 ``` ### Training Data The training data comes from https://github.com/SupritYoung/Zhongjing If you want to know more details about the above github project, you can also read their paper: Zhongjing: Enhancing the Chinese Medical Capabilities of Large Language Model through Expert Feedback and Real-world Multi-turn Dialogue The data includes about one-seventh of the multi-round medical consultation data and six-sevenths of the single medical consultation data. #### Hardware vGPU-32GB * 6 #### Software use peft and deepspeed