File size: 20,028 Bytes
00c59ff fabc5e5 00c59ff 46ddec2 00c59ff 46ddec2 00c59ff 46ddec2 00c59ff 46ddec2 00c59ff 46ddec2 fabc5e5 46ddec2 fabc5e5 46ddec2 fabc5e5 46ddec2 fabc5e5 46ddec2 00c59ff 46ddec2 00c59ff 46ddec2 00c59ff fabc5e5 00c59ff 46ddec2 00c59ff fabc5e5 00c59ff fabc5e5 00c59ff c6de860 46ddec2 00c59ff fabc5e5 00c59ff fabc5e5 3bcd320 c6de860 3bcd320 00c59ff 46ddec2 c6de860 00c59ff 46ddec2 00c59ff 3bcd320 00c59ff 3bcd320 00c59ff fabc5e5 00c59ff fabc5e5 00c59ff 3bcd320 00c59ff fabc5e5 00c59ff 3bcd320 00c59ff 3bcd320 46ddec2 00c59ff ec609aa 00c59ff c6de860 00c59ff 3bcd320 00c59ff 3bcd320 00c59ff fabc5e5 00c59ff 46ddec2 fabc5e5 46ddec2 00c59ff 3bcd320 00c59ff 3bcd320 00c59ff 3bcd320 00c59ff fabc5e5 3bcd320 00c59ff fabc5e5 00c59ff 3bcd320 00c59ff 46ddec2 fabc5e5 46ddec2 00c59ff fabc5e5 00c59ff fabc5e5 00c59ff fabc5e5 00c59ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
import os
import torch
import torchaudio
import psutil
import time
import sys
import numpy as np
import gc
import gradio as gr
from pydub import AudioSegment
from audiocraft.models import MusicGen
from torch.cuda.amp import autocast
# Set PYTORCH_CUDA_ALLOC_CONF to manage memory fragmentation
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:32"
# Check critical dependencies
if np.__version__ != "1.23.5":
print(f"WARNING: NumPy version {np.__version__} is being used. This script was tested with numpy==1.23.5, but proceeding anyway.")
if not torch.__version__.startswith(("2.1.0", "2.3.1")):
print(f"WARNING: PyTorch version {torch.__version__} may not be compatible. Expected torch==2.1.0 or 2.3.1.")
# 1) DEVICE SETUP
device = "cuda" if torch.cuda.is_available() else "cpu"
if device != "cuda":
print("ERROR: CUDA is required for GPU rendering. CPU rendering is disabled to avoid slow performance.")
sys.exit(1)
print(f"CUDA is available. Using GPU: {torch.cuda.get_device_name(0)}")
# 2) LOAD MUSICGEN INTO VRAM
try:
print("Loading MusicGen model into VRAM...")
local_model_path = "/home/ubuntu/ghostai_music_generator/models/musicgen-medium"
if not os.path.exists(local_model_path):
print(f"ERROR: Local model path {local_model_path} does not exist. Please ensure the model weights are downloaded.")
sys.exit(1)
musicgen_model = MusicGen.get_pretrained(local_model_path, device=device)
except Exception as e:
print(f"ERROR: Failed to load MusicGen model: {e}")
print("Please ensure the model weights are in the correct path and dependencies are installed.")
sys.exit(1)
# 3) RESOURCE MONITORING FUNCTION
def print_resource_usage(stage: str):
print(f"--- {stage} ---")
print(f"GPU Memory Allocated: {torch.cuda.memory_allocated() / (1024**3):.2f} GB")
print(f"GPU Memory Reserved: {torch.cuda.memory_reserved() / (1024**3):.2f} GB")
print("---------------")
# 4) GENRE PROMPT FUNCTIONS (Redesigned for better track generation)
def set_classic_rock_prompt():
return "Classic rock with bluesy electric guitars, steady drums, groovy bass, Hammond organ fills, and a Led Zeppelin-inspired raw energy, maintaining a cohesive structure with dynamic solos and powerful choruses."
def set_alternative_rock_prompt():
return "Alternative rock with distorted guitar riffs, punchy drums, melodic basslines, atmospheric synths, and a Nirvana-inspired grunge vibe, featuring introspective verses and explosive choruses."
def set_detroit_techno_prompt():
return "Detroit techno with deep pulsing synths, driving basslines, crisp hi-hats, atmospheric pads, and a rhythmic groove inspired by Juan Atkins, maintaining a hypnotic and energetic flow."
def set_deep_house_prompt():
return "Deep house with warm analog synth chords, soulful vocal chops, deep basslines, crisp hi-hats, and a laid-back groove inspired by Larry Heard, creating a consistent hypnotic vibe with smooth transitions."
def set_smooth_jazz_prompt():
return "Smooth jazz with warm saxophone leads, expressive Rhodes piano chords, soft bossa nova drums, upright bass, and a George Benson-inspired improvisational feel, maintaining a cohesive and relaxing vibe."
def set_bebop_jazz_prompt():
return "Bebop jazz with fast-paced saxophone solos, intricate piano runs, walking basslines, complex drum patterns, and a Charlie Parker-inspired improvisational style, featuring dynamic shifts and virtuosic performances."
def set_baroque_classical_prompt():
return "Baroque classical with harpsichord, delicate violin, cello, flute, and a Vivaldi-inspired melodic structure, featuring intricate counterpoint and elegant ornamentation, maintaining a consistent baroque elegance."
def set_romantic_classical_prompt():
return "Romantic classical with lush strings, expressive piano, dramatic brass, subtle woodwinds, and a Chopin-inspired melodic flow, building emotional intensity with sweeping crescendos and delicate pianissimos."
def set_boom_bap_hiphop_prompt():
return "Boom bap hip-hop with gritty sampled drums, deep basslines, jazzy piano loops, vinyl scratches, and a J Dilla-inspired rhythmic groove, maintaining a consistent head-nodding vibe."
def set_trap_hiphop_prompt():
return "Trap hip-hop with hard-hitting 808 bass, snappy snares, rapid hi-hats, eerie synth melodies, and a modern Atlanta-inspired sound, featuring catchy hooks and energetic drops."
def set_pop_rock_prompt():
return "Pop rock with catchy electric guitar riffs, uplifting synths, steady drums, melodic basslines, and a Coldplay-inspired anthemic feel, featuring bright intros and powerful choruses."
def set_fusion_jazz_prompt():
return "Fusion jazz with electric piano, funky basslines, intricate drum patterns, soaring trumpet, and a Herbie Hancock-inspired groove, blending jazz improvisation with rock and funk elements."
def set_edm_prompt():
return "EDM with high-energy synth leads, pounding basslines, four-on-the-floor kicks, euphoric breakdowns, and a festival-ready drop, inspired by artists like Avicii and Calvin Harris."
def set_indie_folk_prompt():
return "Indie folk with acoustic guitars, heartfelt vocals, gentle percussion, warm bass, and a Bon Iver-inspired intimate atmosphere, featuring layered harmonies and emotional crescendos."
# 5) AUDIO PROCESSING FUNCTIONS (Unchanged)
def apply_chorus(segment):
delayed = segment - 6
delayed = delayed.set_frame_rate(segment.frame_rate)
return segment.overlay(delayed, position=20)
def apply_eq(segment):
segment = segment.low_pass_filter(8000)
segment = segment.high_pass_filter(80)
return segment
def apply_limiter(segment, max_db=-3.0):
if segment.dBFS > max_db:
segment = segment - (segment.dBFS - max_db)
return segment
def apply_final_gain(segment, target_db=-12.0):
gain_adjustment = target_db - segment.dBFS
return segment + gain_adjustment
def apply_fade(segment, fade_in_duration=2000, fade_out_duration=2000):
segment = segment.fade_in(fade_in_duration)
segment = segment.fade_out(fade_out_duration)
return segment
# 6) GENERATION & I/O FUNCTIONS (Unchanged)
def generate_music(instrumental_prompt: str, cfg_scale: float, top_k: int, top_p: float, temperature: float, total_duration: int, crossfade_duration: int):
global musicgen_model
if not instrumental_prompt.strip():
return None, "⚠️ Please enter a valid instrumental prompt!"
try:
start_time = time.time()
total_duration = min(max(total_duration, 10), 90)
chunk_duration = 15
num_chunks = 2 if total_duration <= 30 else 3
chunk_duration = total_duration / num_chunks
overlap_duration = min(1.0, crossfade_duration / 1000.0)
generation_duration = chunk_duration + overlap_duration
audio_chunks = []
sample_rate = musicgen_model.sample_rate
torch.manual_seed(42)
np.random.seed(42)
for i in range(num_chunks):
chunk_prompt = instrumental_prompt
print(f"Generating chunk {i+1}/{num_chunks} on GPU (prompt: {chunk_prompt})...")
musicgen_model.set_generation_params(
duration=generation_duration,
use_sampling=True,
top_k=top_k,
top_p=top_p,
temperature=temperature,
cfg_coef=cfg_scale
)
print_resource_usage(f"Before Chunk {i+1} Generation")
with torch.no_grad():
with autocast():
audio_chunk = musicgen_model.generate([chunk_prompt], progress=True)[0]
audio_chunk = audio_chunk.cpu().to(dtype=torch.float32)
if audio_chunk.dim() == 1:
audio_chunk = torch.stack([audio_chunk, audio_chunk], dim=0)
elif audio_chunk.dim() == 2 and audio_chunk.shape[0] == 1:
audio_chunk = torch.cat([audio_chunk, audio_chunk], dim=0)
elif audio_chunk.dim() == 2 and audio_chunk.shape[0] != 2:
audio_chunk = audio_chunk[:1, :]
audio_chunk = torch.cat([audio_chunk, audio_chunk], dim=0)
elif audio_chunk.dim() > 2:
audio_chunk = audio_chunk.view(2, -1)
if audio_chunk.shape[0] != 2:
raise ValueError(f"Expected stereo audio with shape (2, samples), got shape {audio_chunk.shape}")
temp_wav_path = f"temp_chunk_{i}.wav"
chunk_path = f"chunk_{i}.mp3"
torchaudio.save(temp_wav_path, audio_chunk, sample_rate, bits_per_sample=24)
segment = AudioSegment.from_wav(temp_wav_path)
segment.export(chunk_path, format="mp3", bitrate="320k")
os.remove(temp_wav_path)
audio_chunks.append(chunk_path)
torch.cuda.empty_cache()
gc.collect()
time.sleep(0.5)
print_resource_usage(f"After Chunk {i+1} Generation")
print("Combining audio chunks...")
final_segment = AudioSegment.from_mp3(audio_chunks[0])
for i in range(1, len(audio_chunks)):
next_segment = AudioSegment.from_mp3(audio_chunks[i])
next_segment = next_segment + 1
final_segment = final_segment.append(next_segment, crossfade=crossfade_duration)
final_segment = final_segment[:total_duration * 1000]
print("Post-processing final track...")
final_segment = apply_eq(final_segment)
final_segment = apply_chorus(final_segment)
final_segment = apply_limiter(final_segment, max_db=-3.0)
final_segment = final_segment.normalize(headroom=-6.0)
final_segment = apply_final_gain(final_segment, target_db=-12.0)
mp3_path = "output_cleaned.mp3"
final_segment.export(
mp3_path,
format="mp3",
bitrate="320k",
tags={"title": "GhostAI Instrumental", "artist": "GhostAI"}
)
print(f"Saved final audio to {mp3_path}")
for chunk_path in audio_chunks:
os.remove(chunk_path)
print_resource_usage("After Final Generation")
print(f"Total Generation Time: {time.time() - start_time:.2f} seconds")
return mp3_path, "✅ Done!"
except Exception as e:
return None, f"❌ Generation failed: {e}"
finally:
torch.cuda.empty_cache()
gc.collect()
def clear_inputs():
return "", 3.0, 300, 0.95, 1.0, 30, 500
# 7) CUSTOM CSS (Unchanged)
css = """
body {
background: linear-gradient(135deg, #0A0A0A 0%, #1C2526 100%);
color: #E0E0E0;
font-family: 'Orbitron', sans-serif;
margin: 0;
padding: 0;
}
.header-container {
text-align: center;
padding: 15px 20px;
background: rgba(0, 0, 0, 0.9);
border-bottom: 1px solid #00FF9F;
box-shadow: 0 0 10px rgba(161, 0, 255, 0.3);
}
#ghost-logo {
font-size: 60px;
display: block;
margin: 0 auto;
animation: glitch-ghost 1.5s infinite;
text-shadow: 0 0 10px #A100FF, 0 0 20px #00FF9F;
}
h1 {
color: #A100FF;
font-size: 28px;
margin: 5px 0;
text-shadow: 0 0 5px #A100FF, 0 0 10px #00FF9F;
animation: glitch-text 2s infinite;
}
p {
color: #E0E0E0;
font-size: 14px;
margin: 5px 0;
}
.input-container {
max-width: 1000px;
margin: 20px auto;
padding: 20px;
background: rgba(28, 37, 38, 0.8);
border-radius: 10px;
box-shadow: 0 0 15px rgba(0, 255, 159, 0.3);
}
.textbox {
background: #1A1A1A;
border: 1px solid #A100FF;
color: #E0E0E0;
border-radius: 5px;
padding: 10px;
margin-bottom: 20px;
}
.genre-buttons {
display: flex;
justify-content: center;
gap: 15px;
margin-bottom: 20px;
}
.genre-btn {
background: linear-gradient(45deg, #A100FF, #00FF9F);
border: none;
color: #0A0A0A;
font-weight: bold;
padding: 10px 20px;
border-radius: 5px;
transition: transform 0.3s ease, box-shadow 0.3s ease;
}
.genre-btn:hover {
transform: scale(1.05);
box-shadow: 0 0 15px #00FF9F;
}
.settings-container {
max-width: 1000px;
margin: 20px auto;
padding: 20px;
background: rgba(28, 37, 38, 0.8);
border-radius: 10px;
box-shadow: 0 0 15px rgba(0, 255, 159, 0.3);
}
.action-buttons {
display: flex;
justify-content: center;
gap: 20px;
margin-top: 20px;
}
button {
background: linear-gradient(45deg, #A100FF, #00FF9F);
border: none;
color: #0A0A0A;
font-weight: bold;
padding: 12px 24px;
border-radius: 5px;
transition: transform 0.3s ease, box-shadow 0.3s ease;
}
button:hover {
transform: scale(1.05);
box-shadow: 0 0 15px #00FF9F;
}
.output-container {
max-width: 1000px;
margin: 20px auto;
padding: 20px;
background: rgba(28, 37, 38, 0.8);
border-radius: 10px;
box-shadow: 0 0 15px rgba(0, 255, 159, 0.3);
text-align: center;
}
@keyframes glitch-ghost {
0% { transform: translate(0, 0); opacity: 1; }
20% { transform: translate(-5px, 2px); opacity: 0.8; }
40% { transform: translate(5px, -2px); opacity: 0.6; }
60% { transform: translate(-3px, 1px); opacity: 0.9; }
80% { transform: translate(3px, -1px); opacity: 0.7; }
100% { transform: translate(0, 0); opacity: 1; }
}
@keyframes glitch-text {
0% { transform: translate(0, 0); text-shadow: 0 0 10px #A100FF, 0 0 20px #00FF9F; }
20% { transform: translate(-2px, 1px); text-shadow: 0 0 15px #00FF9F, 0 0 25px #A100FF; }
40% { transform: translate(2px, -1px); text-shadow: 0 0 10px #A100FF, 0 0 30px #00FF9F; }
60% { transform: translate(-1px, 2px); text-shadow: 0 0 15px #00FF9F, 0 0 20px #A100FF; }
80% { transform: translate(1px, -2px); text-shadow: 0 0 10px #A100FF, 0 0 25px #00FF9F; }
100% { transform: translate(0, 0); text-shadow: 0 0 10px #A100FF, 0 0 20px #00FF9F; }
}
@font-face {
font-family: 'Orbitron';
src: url('https://fonts.gstatic.com/s/orbitron/v29/yMJRMIlzdpvBhQQL_Qq7dy0.woff2') format('woff2');
}
"""
# 8) BUILD WITH BLOCKS
with gr.Blocks(css=css) as demo:
gr.Markdown("""
<div class="header-container">
<div id="ghost-logo">👻</div>
<h1>GhostAI Music Generator</h1>
<p>Summon the Sound of the Unknown</p>
</div>
""")
with gr.Column(elem_classes="input-container"):
instrumental_prompt = gr.Textbox(
label="Instrumental Prompt",
placeholder="Click a genre button below or type your own instrumental prompt",
lines=4,
elem_classes="textbox"
)
with gr.Row(elem_classes="genre-buttons"):
classic_rock_btn = gr.Button("Classic Rock", elem_classes="genre-btn")
alternative_rock_btn = gr.Button("Alternative Rock", elem_classes="genre-btn")
detroit_techno_btn = gr.Button("Detroit Techno", elem_classes="genre-btn")
deep_house_btn = gr.Button("Deep House", elem_classes="genre-btn")
smooth_jazz_btn = gr.Button("Smooth Jazz", elem_classes="genre-btn")
bebop_jazz_btn = gr.Button("Bebop Jazz", elem_classes="genre-btn")
baroque_classical_btn = gr.Button("Baroque Classical", elem_classes="genre-btn")
romantic_classical_btn = gr.Button("Romantic Classical", elem_classes="genre-btn")
boom_bap_hiphop_btn = gr.Button("Boom Bap Hip-Hop", elem_classes="genre-btn")
trap_hiphop_btn = gr.Button("Trap Hip-Hop", elem_classes="genre-btn")
pop_rock_btn = gr.Button("Pop Rock", elem_classes="genre-btn")
fusion_jazz_btn = gr.Button("Fusion Jazz", elem_classes="genre-btn")
edm_btn = gr.Button("EDM", elem_classes="genre-btn")
indie_folk_btn = gr.Button("Indie Folk", elem_classes="genre-btn")
with gr.Column(elem_classes="settings-container"):
cfg_scale = gr.Slider(
label="Guidance Scale (CFG)",
minimum=1.0,
maximum=10.0,
value=3.0,
step=0.1,
info="Higher values make the instrumental more closely follow the prompt, but may reduce diversity."
)
top_k = gr.Slider(
label="Top-K Sampling",
minimum=10,
maximum=500,
value=300,
step=10,
info="Limits sampling to the top k most likely tokens. Higher values increase diversity."
)
top_p = gr.Slider(
label="Top-P Sampling (Nucleus Sampling)",
minimum=0.0,
maximum=1.0,
value=0.95,
step=0.1,
info="Keeps tokens with cumulative probability above p. Higher values increase diversity."
)
temperature = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
info="Controls randomness. Higher values make output more diverse but less predictable."
)
total_duration = gr.Slider(
label="Total Duration (seconds)",
minimum=10,
maximum=90,
value=30,
step=1,
info="Total duration of the track (10 to 90 seconds)."
)
crossfade_duration = gr.Slider(
label="Crossfade Duration (ms)",
minimum=100,
maximum=2000,
value=500,
step=100,
info="Crossfade duration between chunks for smoother transitions."
)
with gr.Row(elem_classes="action-buttons"):
gen_btn = gr.Button("Generate Music")
clr_btn = gr.Button("Clear Inputs")
with gr.Column(elem_classes="output-container"):
out_audio = gr.Audio(label="Generated Stereo Instrumental Track", type="filepath")
status = gr.Textbox(label="Status", interactive=False)
classic_rock_btn.click(set_classic_rock_prompt, inputs=None, outputs=[instrumental_prompt])
alternative_rock_btn.click(set_alternative_rock_prompt, inputs=None, outputs=[instrumental_prompt])
detroit_techno_btn.click(set_detroit_techno_prompt, inputs=None, outputs=[instrumental_prompt])
deep_house_btn.click(set_deep_house_prompt, inputs=None, outputs=[instrumental_prompt])
smooth_jazz_btn.click(set_smooth_jazz_prompt, inputs=None, outputs=[instrumental_prompt])
bebop_jazz_btn.click(set_bebop_jazz_prompt, inputs=None, outputs=[instrumental_prompt])
baroque_classical_btn.click(set_baroque_classical_prompt, inputs=None, outputs=[instrumental_prompt])
romantic_classical_btn.click(set_romantic_classical_prompt, inputs=None, outputs=[instrumental_prompt])
boom_bap_hiphop_btn.click(set_boom_bap_hiphop_prompt, inputs=None, outputs=[instrumental_prompt])
trap_hiphop_btn.click(set_trap_hiphop_prompt, inputs=None, outputs=[instrumental_prompt])
pop_rock_btn.click(set_pop_rock_prompt, inputs=None, outputs=[instrumental_prompt])
fusion_jazz_btn.click(set_fusion_jazz_prompt, inputs=None, outputs=[instrumental_prompt])
edm_btn.click(set_edm_prompt, inputs=None, outputs=[instrumental_prompt])
indie_folk_btn.click(set_indie_folk_prompt, inputs=None, outputs=[instrumental_prompt])
gen_btn.click(
generate_music,
inputs=[instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, crossfade_duration],
outputs=[out_audio, status]
)
clr_btn.click(
clear_inputs,
inputs=None,
outputs=[instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, crossfade_duration]
)
# 9) TURN OFF OPENAPI/DOCS
app = demo.launch(
server_name="0.0.0.0",
server_port=9999,
share=False,
inbrowser=False,
show_error=True
)
try:
fastapi_app = demo._server.app
fastapi_app.docs_url = None
fastapi_app.redoc_url = None
fastapi_app.openapi_url = None
except Exception:
pass |