File size: 18,017 Bytes
d121304 5a93f4a d121304 5a93f4a d121304 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
import os
import torch
import torchaudio
import psutil
import time
import sys
import numpy as np
import gc
import gradio as gr
from pydub import AudioSegment
from audiocraft.models import MusicGen
from torch.cuda.amp import autocast
import warnings
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore")
# Set PYTORCH_CUDA_ALLOC_CONF to manage memory fragmentation
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
# Check critical dependencies
if np.__version__ != "1.23.5":
print(f"WARNING: NumPy version {np.__version__} is being used. Tested with numpy==1.23.5.")
if not torch.__version__.startswith(("2.1.0", "2.3.1")):
print(f"WARNING: PyTorch version {torch.__version__} may not be compatible. Expected torch==2.1.0 or 2.3.1.")
# 1) DEVICE SETUP
device = "cuda" if torch.cuda.is_available() else "cpu"
if device != "cuda":
print("ERROR: CUDA is required for GPU rendering. CPU rendering is disabled.")
sys.exit(1)
print(f"CUDA is available. Using GPU: {torch.cuda.get_device_name(0)}")
# 2) LOAD MUSICGEN INTO VRAM
try:
print("Loading MusicGen medium model into VRAM...")
local_model_path = "./models/musicgen-medium"
if not os.path.exists(local_model_path):
print(f"ERROR: Local model path {local_model_path} does not exist.")
print("Please download the MusicGen medium model weights and place them in the correct directory.")
sys.exit(1)
musicgen_model = MusicGen.get_pretrained(local_model_path, device=device)
musicgen_model.set_generation_params(
duration=15, # Default chunk duration
two_step_cfg=False # Disable two-step CFG for stability
)
except Exception as e:
print(f"ERROR: Failed to load MusicGen model: {e}")
print("Ensure model weights are correctly placed and dependencies are installed.")
sys.exit(1)
# 3) RESOURCE MONITORING FUNCTION
def print_resource_usage(stage: str):
print(f"--- {stage} ---")
print(f"GPU Memory Allocated: {torch.cuda.memory_allocated() / (1024**3):.2f} GB")
print(f"GPU Memory Reserved: {torch.cuda.memory_reserved() / (1024**3):.2f} GB")
print(f"CPU Memory Used: {psutil.virtual_memory().percent}%")
print("---------------")
# 4) GENRE PROMPT FUNCTIONS
def set_classic_rock_prompt():
return "Classic rock with bluesy electric guitars, steady drums, groovy bass, Hammond organ fills, and a Led Zeppelin-inspired raw energy."
def set_alternative_rock_prompt():
return "Alternative rock with distorted guitar riffs, punchy drums, melodic basslines, atmospheric synths, and a Nirvana-inspired grunge vibe."
def set_detroit_techno_prompt():
return "Detroit techno with deep pulsing synths, driving basslines, crisp hi-hats, and a rhythmic groove inspired by Juan Atkins."
def set_deep_house_prompt():
return "Deep house with warm analog synth chords, soulful vocal chops, deep basslines, and a laid-back groove inspired by Larry Heard."
def set_smooth_jazz_prompt():
return "Smooth jazz with warm saxophone leads, expressive Rhodes piano chords, soft bossa nova drums, and a George Benson-inspired feel."
def set_bebop_jazz_prompt():
return "Bebop jazz with fast-paced saxophone solos, intricate piano runs, walking basslines, and a Charlie Parker-inspired style."
def set_baroque_classical_prompt():
return "Baroque classical with harpsichord, delicate violin, cello, and a Vivaldi-inspired melodic structure."
def set_romantic_classical_prompt():
return "Romantic classical with lush strings, expressive piano, dramatic brass, and a Chopin-inspired melodic flow."
def set_boom_bap_hiphop_prompt():
return "Boom bap hip-hop with gritty sampled drums, deep basslines, jazzy piano loops, and a J Dilla-inspired groove."
def set_trap_hiphop_prompt():
return "Trap hip-hop with hard-hitting 808 bass, snappy snares, rapid hi-hats, and eerie synth melodies."
def set_pop_rock_prompt():
return "Pop rock with catchy electric guitar riffs, uplifting synths, steady drums, and a Coldplay-inspired anthemic feel."
def set_fusion_jazz_prompt():
return "Fusion jazz with electric piano, funky basslines, intricate drum patterns, and a Herbie Hancock-inspired groove."
def set_edm_prompt():
return "EDM with high-energy synth leads, pounding basslines, four-on-the-floor kicks, and a festival-ready drop."
def set_indie_folk_prompt():
return "Indie folk with acoustic guitars, heartfelt vocals, gentle percussion, and a Bon Iver-inspired atmosphere."
# 5) AUDIO PROCESSING FUNCTIONS
def apply_chorus(segment):
delayed = segment - 6
delayed = delayed.set_frame_rate(segment.frame_rate)
return segment.overlay(delayed, position=20)
def apply_eq(segment):
segment = segment.low_pass_filter(8000)
segment = segment.high_pass_filter(80)
return segment
def apply_limiter(segment, max_db=-3.0):
if segment.dBFS > max_db:
segment = segment - (segment.dBFS - max_db)
return segment
def apply_final_gain(segment, target_db=-12.0):
gain_adjustment = target_db - segment.dBFS
return segment + gain_adjustment
def apply_fade(segment, fade_in_duration=2000, fade_out_duration=2000):
segment = segment.fade_in(fade_in_duration)
segment = segment.fade_out(fade_out_duration)
return segment
# 6) GENERATION & I/O FUNCTIONS
def generate_music(instrumental_prompt: str, cfg_scale: float, top_k: int, top_p: float, temperature: float, total_duration: int, crossfade_duration: int, num_variations: int = 1):
global musicgen_model
if not instrumental_prompt.strip():
return None, "⚠️ Please enter a valid instrumental prompt!"
try:
start_time = time.time()
total_duration = min(max(total_duration, 10), 90)
chunk_duration = 15
num_chunks = max(1, total_duration // chunk_duration)
chunk_duration = total_duration / num_chunks
overlap_duration = min(1.0, crossfade_duration / 1000.0)
generation_duration = chunk_duration + overlap_duration
output_files = []
sample_rate = musicgen_model.sample_rate
for var in range(num_variations):
print(f"Generating variation {var+1}/{num_variations}...")
audio_chunks = []
seed = 42 + var # Use different seeds for variations
torch.manual_seed(seed)
np.random.seed(seed)
for i in range(num_chunks):
chunk_prompt = instrumental_prompt
print(f"Generating chunk {i+1}/{num_chunks} for variation {var+1} on GPU (prompt: {chunk_prompt})...")
musicgen_model.set_generation_params(
duration=generation_duration,
use_sampling=True,
top_k=top_k,
top_p=top_p,
temperature=temperature,
cfg_coef=cfg_scale
)
print_resource_usage(f"Before Chunk {i+1} Generation (Variation {var+1})")
with torch.no_grad():
with autocast():
audio_chunk = musicgen_model.generate([chunk_prompt], progress=True)[0]
audio_chunk = audio_chunk.cpu().to(dtype=torch.float32)
if audio_chunk.dim() == 1:
audio_chunk = torch.stack([audio_chunk, audio_chunk], dim=0)
elif audio_chunk.dim() == 2 and audio_chunk.shape[0] == 1:
audio_chunk = torch.cat([audio_chunk, audio_chunk], dim=0)
elif audio_chunk.dim() == 2 and audio_chunk.shape[0] != 2:
audio_chunk = audio_chunk[:1, :]
audio_chunk = torch.cat([audio_chunk, audio_chunk], dim=0)
elif audio_chunk.dim() > 2:
audio_chunk = audio_chunk.view(2, -1)
if audio_chunk.shape[0] != 2:
raise ValueError(f"Expected stereo audio with shape (2, samples), got shape {audio_chunk.shape}")
temp_wav_path = f"temp_chunk_{var}_{i}.wav"
chunk_path = f"chunk_{var}_{i}.mp3"
torchaudio.save(temp_wav_path, audio_chunk, sample_rate, bits_per_sample=24)
segment = AudioSegment.from_wav(temp_wav_path)
segment.export(chunk_path, format="mp3", bitrate="320k")
os.remove(temp_wav_path)
audio_chunks.append(chunk_path)
torch.cuda.empty_cache()
gc.collect()
time.sleep(0.5)
print_resource_usage(f"After Chunk {i+1} Generation (Variation {var+1})")
print(f"Combining audio chunks for variation {var+1}...")
final_segment = AudioSegment.from_mp3(audio_chunks[0])
for i in range(1, len(audio_chunks)):
next_segment = AudioSegment.from_mp3(audio_chunks[i])
next_segment = next_segment + 1
final_segment = final_segment.append(next_segment, crossfade=crossfade_duration)
final_segment = final_segment[:total_duration * 1000]
print(f"Post-processing final track for variation {var+1}...")
final_segment = apply_eq(final_segment)
final_segment = apply_chorus(final_segment)
final_segment = apply_limiter(final_segment, max_db=-3.0)
final_segment = final_segment.normalize(headroom=-6.0)
final_segment = apply_final_gain(final_segment, target_db=-12.0)
mp3_path = f"output_cleaned_variation_{var+1}.mp3"
final_segment.export(
mp3_path,
format="mp3",
bitrate="320k",
tags={"title": f"GhostAI Instrumental Variation {var+1}", "artist": "GhostAI"}
)
print(f"Saved final audio to {mp3_path}")
output_files.append(mp3_path)
for chunk_path in audio_chunks:
os.remove(chunk_path)
print_resource_usage("After Final Generation")
print(f"Total Generation Time: {time.time() - start_time:.2f} seconds")
# Return the first variation for Gradio display; others are saved to disk
return output_files[0], f"✅ Done! Generated {num_variations} variations."
except Exception as e:
return None, f"❌ Generation failed: {e}"
finally:
torch.cuda.empty_cache()
gc.collect()
def clear_inputs():
return "", 3.0, 250, 0.9, 1.0, 30, 500, 1
# 7) CUSTOM CSS
css = """
body {
background: linear-gradient(135deg, #0A0A0A 0%, #1C2526 100%);
color: #E0E0E0;
font-family: 'Orbitron', sans-serif;
}
.header-container {
text-align: center;
padding: 15px 20px;
background: rgba(0, 0, 0, 0.9);
border-bottom: 1px solid #00FF9F;
}
#ghost-logo {
font-size: 60px;
animation: glitch-ghost 1.5s infinite;
}
h1 {
color: #A100FF;
font-size: 28px;
animation: glitch-text 2s infinite;
}
.input-container, .settings-container, .output-container {
max-width: 1000px;
margin: 20px auto;
padding: 20px;
background: rgba(28, 37, 38, 0.8);
border-radius: 10px;
}
.textbox {
background: #1A1A1A;
border: 1px solid #A100FF;
color: #E0E0E0;
}
.genre-buttons {
display: flex;
justify-content: center;
gap: 15px;
}
.genre-btn, button {
background: linear-gradient(45deg, #A100FF, #00FF9F);
border: none;
color: #0A0A0A;
padding: 10px 20px;
border-radius: 5px;
}
@keyframes glitch-ghost {
0% { transform: translate(0, 0); opacity: 1; }
20% { transform: translate(-5px, 2px); opacity: 0.8; }
100% { transform: translate(0, 0); opacity: 1; }
}
@keyframes glitch-text {
0% { transform: translate(0, 0); }
20% { transform: translate(-2px, 1px); }
100% { transform: translate(0, 0); }
}
@font-face {
font-family: 'Orbitron';
src: url('https://fonts.gstatic.com/s/orbitron/v29/yMJRMIlzdpvBhQQL_Qq7dy0.woff2') format('woff2');
}
"""
# 8) BUILD WITH BLOCKS
with gr.Blocks(css=css) as demo:
gr.Markdown("""
<div class="header-container">
<div id="ghost-logo">👻</div>
<h1>GhostAI Music Generator</h1>
<p>Summon the Sound of the Unknown</p>
</div>
""")
with gr.Column(elem_classes="input-container"):
instrumental_prompt = gr.Textbox(
label="Instrumental Prompt",
placeholder="Click a genre button or type your own prompt",
lines=4,
elem_classes="textbox"
)
with gr.Row(elem_classes="genre-buttons"):
classic_rock_btn = gr.Button("Classic Rock", elem_classes="genre-btn")
alternative_rock_btn = gr.Button("Alternative Rock", elem_classes="genre-btn")
detroit_techno_btn = gr.Button("Detroit Techno", elem_classes="genre-btn")
deep_house_btn = gr.Button("Deep House", elem_classes="genre-btn")
smooth_jazz_btn = gr.Button("Smooth Jazz", elem_classes="genre-btn")
bebop_jazz_btn = gr.Button("Bebop Jazz", elem_classes="genre-btn")
baroque_classical_btn = gr.Button("Baroque Classical", elem_classes="genre-btn")
romantic_classical_btn = gr.Button("Romantic Classical", elem_classes="genre-btn")
boom_bap_hiphop_btn = gr.Button("Boom Bap Hip-Hop", elem_classes="genre-btn")
trap_hiphop_btn = gr.Button("Trap Hip-Hop", elem_classes="genre-btn")
pop_rock_btn = gr.Button("Pop Rock", elem_classes="genre-btn")
fusion_jazz_btn = gr.Button("Fusion Jazz", elem_classes="genre-btn")
edm_btn = gr.Button("EDM", elem_classes="genre-btn")
indie_folk_btn = gr.Button("Indie Folk", elem_classes="genre-btn")
with gr.Column(elem_classes="settings-container"):
cfg_scale = gr.Slider(
label="Guidance Scale (CFG)",
minimum=1.0,
maximum=10.0,
value=3.0,
step=0.1,
info="Higher values make the instrumental more closely follow the prompt."
)
top_k = gr.Slider(
label="Top-K Sampling",
minimum=10,
maximum=500,
value=250,
step=10,
info="Limits sampling to the top k most likely tokens."
)
top_p = gr.Slider(
label="Top-P Sampling",
minimum=0.0,
maximum=1.0,
value=0.9,
step=0.05,
info="Keeps tokens with cumulative probability above p."
)
temperature = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
info="Controls randomness. Higher values make output more diverse."
)
total_duration = gr.Slider(
label="Total Duration (seconds)",
minimum=10,
maximum=90,
value=30,
step=1,
info="Total duration of the track (10 to 90 seconds)."
)
crossfade_duration = gr.Slider(
label="Crossfade Duration (ms)",
minimum=100,
maximum=2000,
value=500,
step=100,
info="Crossfade duration between chunks."
)
num_variations = gr.Slider(
label="Number of Variations",
minimum=1,
maximum=4,
value=1,
step=1,
info="Number of different versions to generate with varying random seeds."
)
with gr.Row(elem_classes="action-buttons"):
gen_btn = gr.Button("Generate Music")
clr_btn = gr.Button("Clear Inputs")
with gr.Column(elem_classes="output-container"):
out_audio = gr.Audio(label="Generated Stereo Instrumental Track", type="filepath")
status = gr.Textbox(label="Status", interactive=False)
classic_rock_btn.click(set_classic_rock_prompt, inputs=None, outputs=[instrumental_prompt])
alternative_rock_btn.click(set_alternative_rock_prompt, inputs=None, outputs=[instrumental_prompt])
detroit_techno_btn.click(set_detroit_techno_prompt, inputs=None, outputs=[instrumental_prompt])
deep_house_btn.click(set_deep_house_prompt, inputs=None, outputs=[instrumental_prompt])
smooth_jazz_btn.click(set_smooth_jazz_prompt, inputs=None, outputs=[instrumental_prompt])
bebop_jazz_btn.click(set_bebop_jazz_prompt, inputs=None, outputs=[instrumental_prompt])
baroque_classical_btn.click(set_baroque_classical_prompt, inputs=None, outputs=[instrumental_prompt])
romantic_classical_btn.click(set_romantic_classical_prompt, inputs=None, outputs=[instrumental_prompt])
boom_bap_hiphop_btn.click(set_boom_bap_hiphop_prompt, inputs=None, outputs=[instrumental_prompt])
trap_hiphop_btn.click(set_trap_hiphop_prompt, inputs=None, outputs=[instrumental_prompt])
pop_rock_btn.click(set_pop_rock_prompt, inputs=None, outputs=[instrumental_prompt])
fusion_jazz_btn.click(set_fusion_jazz_prompt, inputs=None, outputs=[instrumental_prompt])
edm_btn.click(set_edm_prompt, inputs=None, outputs=[instrumental_prompt])
indie_folk_btn.click(set_indie_folk_prompt, inputs=None, outputs=[instrumental_prompt])
gen_btn.click(
generate_music,
inputs=[instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, crossfade_duration, num_variations],
outputs=[out_audio, status]
)
clr_btn.click(
clear_inputs,
inputs=None,
outputs=[instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, crossfade_duration, num_variations]
)
# 9) TURN OFF OPENAPI/DOCS
app = demo.launch(
server_name="0.0.0.0",
server_port=9999,
share=False,
inbrowser=False,
show_error=True
)
try:
fastapi_app = demo._server.app
fastapi_app.docs_url = None
fastapi_app.redoc_url = None
fastapi_app.openapi_url = None
except Exception:
pass |