File size: 18,017 Bytes
d121304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a93f4a
d121304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a93f4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d121304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import os
import torch
import torchaudio
import psutil
import time
import sys
import numpy as np
import gc
import gradio as gr
from pydub import AudioSegment
from audiocraft.models import MusicGen
from torch.cuda.amp import autocast
import warnings

# Suppress warnings for cleaner output
warnings.filterwarnings("ignore")

# Set PYTORCH_CUDA_ALLOC_CONF to manage memory fragmentation
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"

# Check critical dependencies
if np.__version__ != "1.23.5":
    print(f"WARNING: NumPy version {np.__version__} is being used. Tested with numpy==1.23.5.")
if not torch.__version__.startswith(("2.1.0", "2.3.1")):
    print(f"WARNING: PyTorch version {torch.__version__} may not be compatible. Expected torch==2.1.0 or 2.3.1.")

# 1) DEVICE SETUP
device = "cuda" if torch.cuda.is_available() else "cpu"
if device != "cuda":
    print("ERROR: CUDA is required for GPU rendering. CPU rendering is disabled.")
    sys.exit(1)
print(f"CUDA is available. Using GPU: {torch.cuda.get_device_name(0)}")

# 2) LOAD MUSICGEN INTO VRAM
try:
    print("Loading MusicGen medium model into VRAM...")
    local_model_path = "./models/musicgen-medium"
    if not os.path.exists(local_model_path):
        print(f"ERROR: Local model path {local_model_path} does not exist.")
        print("Please download the MusicGen medium model weights and place them in the correct directory.")
        sys.exit(1)
    musicgen_model = MusicGen.get_pretrained(local_model_path, device=device)
    musicgen_model.set_generation_params(
        duration=15,  # Default chunk duration
        two_step_cfg=False  # Disable two-step CFG for stability
    )
except Exception as e:
    print(f"ERROR: Failed to load MusicGen model: {e}")
    print("Ensure model weights are correctly placed and dependencies are installed.")
    sys.exit(1)

# 3) RESOURCE MONITORING FUNCTION
def print_resource_usage(stage: str):
    print(f"--- {stage} ---")
    print(f"GPU Memory Allocated: {torch.cuda.memory_allocated() / (1024**3):.2f} GB")
    print(f"GPU Memory Reserved: {torch.cuda.memory_reserved() / (1024**3):.2f} GB")
    print(f"CPU Memory Used: {psutil.virtual_memory().percent}%")
    print("---------------")

# 4) GENRE PROMPT FUNCTIONS
def set_classic_rock_prompt():
    return "Classic rock with bluesy electric guitars, steady drums, groovy bass, Hammond organ fills, and a Led Zeppelin-inspired raw energy."

def set_alternative_rock_prompt():
    return "Alternative rock with distorted guitar riffs, punchy drums, melodic basslines, atmospheric synths, and a Nirvana-inspired grunge vibe."

def set_detroit_techno_prompt():
    return "Detroit techno with deep pulsing synths, driving basslines, crisp hi-hats, and a rhythmic groove inspired by Juan Atkins."

def set_deep_house_prompt():
    return "Deep house with warm analog synth chords, soulful vocal chops, deep basslines, and a laid-back groove inspired by Larry Heard."

def set_smooth_jazz_prompt():
    return "Smooth jazz with warm saxophone leads, expressive Rhodes piano chords, soft bossa nova drums, and a George Benson-inspired feel."

def set_bebop_jazz_prompt():
    return "Bebop jazz with fast-paced saxophone solos, intricate piano runs, walking basslines, and a Charlie Parker-inspired style."

def set_baroque_classical_prompt():
    return "Baroque classical with harpsichord, delicate violin, cello, and a Vivaldi-inspired melodic structure."

def set_romantic_classical_prompt():
    return "Romantic classical with lush strings, expressive piano, dramatic brass, and a Chopin-inspired melodic flow."

def set_boom_bap_hiphop_prompt():
    return "Boom bap hip-hop with gritty sampled drums, deep basslines, jazzy piano loops, and a J Dilla-inspired groove."

def set_trap_hiphop_prompt():
    return "Trap hip-hop with hard-hitting 808 bass, snappy snares, rapid hi-hats, and eerie synth melodies."

def set_pop_rock_prompt():
    return "Pop rock with catchy electric guitar riffs, uplifting synths, steady drums, and a Coldplay-inspired anthemic feel."

def set_fusion_jazz_prompt():
    return "Fusion jazz with electric piano, funky basslines, intricate drum patterns, and a Herbie Hancock-inspired groove."

def set_edm_prompt():
    return "EDM with high-energy synth leads, pounding basslines, four-on-the-floor kicks, and a festival-ready drop."

def set_indie_folk_prompt():
    return "Indie folk with acoustic guitars, heartfelt vocals, gentle percussion, and a Bon Iver-inspired atmosphere."

# 5) AUDIO PROCESSING FUNCTIONS
def apply_chorus(segment):
    delayed = segment - 6
    delayed = delayed.set_frame_rate(segment.frame_rate)
    return segment.overlay(delayed, position=20)

def apply_eq(segment):
    segment = segment.low_pass_filter(8000)
    segment = segment.high_pass_filter(80)
    return segment

def apply_limiter(segment, max_db=-3.0):
    if segment.dBFS > max_db:
        segment = segment - (segment.dBFS - max_db)
    return segment

def apply_final_gain(segment, target_db=-12.0):
    gain_adjustment = target_db - segment.dBFS
    return segment + gain_adjustment

def apply_fade(segment, fade_in_duration=2000, fade_out_duration=2000):
    segment = segment.fade_in(fade_in_duration)
    segment = segment.fade_out(fade_out_duration)
    return segment

# 6) GENERATION & I/O FUNCTIONS
def generate_music(instrumental_prompt: str, cfg_scale: float, top_k: int, top_p: float, temperature: float, total_duration: int, crossfade_duration: int, num_variations: int = 1):
    global musicgen_model
    if not instrumental_prompt.strip():
        return None, "⚠️ Please enter a valid instrumental prompt!"
    try:
        start_time = time.time()
        total_duration = min(max(total_duration, 10), 90)
        chunk_duration = 15
        num_chunks = max(1, total_duration // chunk_duration)
        chunk_duration = total_duration / num_chunks
        overlap_duration = min(1.0, crossfade_duration / 1000.0)
        generation_duration = chunk_duration + overlap_duration

        output_files = []
        sample_rate = musicgen_model.sample_rate

        for var in range(num_variations):
            print(f"Generating variation {var+1}/{num_variations}...")
            audio_chunks = []
            seed = 42 + var  # Use different seeds for variations
            torch.manual_seed(seed)
            np.random.seed(seed)

            for i in range(num_chunks):
                chunk_prompt = instrumental_prompt
                print(f"Generating chunk {i+1}/{num_chunks} for variation {var+1} on GPU (prompt: {chunk_prompt})...")
                musicgen_model.set_generation_params(
                    duration=generation_duration,
                    use_sampling=True,
                    top_k=top_k,
                    top_p=top_p,
                    temperature=temperature,
                    cfg_coef=cfg_scale
                )

                print_resource_usage(f"Before Chunk {i+1} Generation (Variation {var+1})")

                with torch.no_grad():
                    with autocast():
                        audio_chunk = musicgen_model.generate([chunk_prompt], progress=True)[0]

                audio_chunk = audio_chunk.cpu().to(dtype=torch.float32)
                if audio_chunk.dim() == 1:
                    audio_chunk = torch.stack([audio_chunk, audio_chunk], dim=0)
                elif audio_chunk.dim() == 2 and audio_chunk.shape[0] == 1:
                    audio_chunk = torch.cat([audio_chunk, audio_chunk], dim=0)
                elif audio_chunk.dim() == 2 and audio_chunk.shape[0] != 2:
                    audio_chunk = audio_chunk[:1, :]
                    audio_chunk = torch.cat([audio_chunk, audio_chunk], dim=0)
                elif audio_chunk.dim() > 2:
                    audio_chunk = audio_chunk.view(2, -1)

                if audio_chunk.shape[0] != 2:
                    raise ValueError(f"Expected stereo audio with shape (2, samples), got shape {audio_chunk.shape}")

                temp_wav_path = f"temp_chunk_{var}_{i}.wav"
                chunk_path = f"chunk_{var}_{i}.mp3"
                torchaudio.save(temp_wav_path, audio_chunk, sample_rate, bits_per_sample=24)
                segment = AudioSegment.from_wav(temp_wav_path)
                segment.export(chunk_path, format="mp3", bitrate="320k")
                os.remove(temp_wav_path)
                audio_chunks.append(chunk_path)

                torch.cuda.empty_cache()
                gc.collect()
                time.sleep(0.5)
                print_resource_usage(f"After Chunk {i+1} Generation (Variation {var+1})")

            print(f"Combining audio chunks for variation {var+1}...")
            final_segment = AudioSegment.from_mp3(audio_chunks[0])
            for i in range(1, len(audio_chunks)):
                next_segment = AudioSegment.from_mp3(audio_chunks[i])
                next_segment = next_segment + 1
                final_segment = final_segment.append(next_segment, crossfade=crossfade_duration)

            final_segment = final_segment[:total_duration * 1000]

            print(f"Post-processing final track for variation {var+1}...")
            final_segment = apply_eq(final_segment)
            final_segment = apply_chorus(final_segment)
            final_segment = apply_limiter(final_segment, max_db=-3.0)
            final_segment = final_segment.normalize(headroom=-6.0)
            final_segment = apply_final_gain(final_segment, target_db=-12.0)

            mp3_path = f"output_cleaned_variation_{var+1}.mp3"
            final_segment.export(
                mp3_path,
                format="mp3",
                bitrate="320k",
                tags={"title": f"GhostAI Instrumental Variation {var+1}", "artist": "GhostAI"}
            )
            print(f"Saved final audio to {mp3_path}")
            output_files.append(mp3_path)

            for chunk_path in audio_chunks:
                os.remove(chunk_path)

        print_resource_usage("After Final Generation")
        print(f"Total Generation Time: {time.time() - start_time:.2f} seconds")

        # Return the first variation for Gradio display; others are saved to disk
        return output_files[0], f"✅ Done! Generated {num_variations} variations."
    except Exception as e:
        return None, f"❌ Generation failed: {e}"
    finally:
        torch.cuda.empty_cache()
        gc.collect()

def clear_inputs():
    return "", 3.0, 250, 0.9, 1.0, 30, 500, 1

# 7) CUSTOM CSS
css = """
body { 
    background: linear-gradient(135deg, #0A0A0A 0%, #1C2526 100%); 
    color: #E0E0E0; 
    font-family: 'Orbitron', sans-serif; 
}
.header-container { 
    text-align: center; 
    padding: 15px 20px; 
    background: rgba(0, 0, 0, 0.9); 
    border-bottom: 1px solid #00FF9F; 
}
#ghost-logo { 
    font-size: 60px; 
    animation: glitch-ghost 1.5s infinite; 
}
h1 { 
    color: #A100FF; 
    font-size: 28px; 
    animation: glitch-text 2s infinite; 
}
.input-container, .settings-container, .output-container { 
    max-width: 1000px; 
    margin: 20px auto; 
    padding: 20px; 
    background: rgba(28, 37, 38, 0.8); 
    border-radius: 10px; 
}
.textbox { 
    background: #1A1A1A; 
    border: 1px solid #A100FF; 
    color: #E0E0E0; 
}
.genre-buttons { 
    display: flex; 
    justify-content: center; 
    gap: 15px; 
}
.genre-btn, button { 
    background: linear-gradient(45deg, #A100FF, #00FF9F); 
    border: none; 
    color: #0A0A0A; 
    padding: 10px 20px; 
    border-radius: 5px; 
}
@keyframes glitch-ghost { 
    0% { transform: translate(0, 0); opacity: 1; }
    20% { transform: translate(-5px, 2px); opacity: 0.8; }
    100% { transform: translate(0, 0); opacity: 1; }
}
@keyframes glitch-text { 
    0% { transform: translate(0, 0); }
    20% { transform: translate(-2px, 1px); }
    100% { transform: translate(0, 0); }
}
@font-face { 
    font-family: 'Orbitron'; 
    src: url('https://fonts.gstatic.com/s/orbitron/v29/yMJRMIlzdpvBhQQL_Qq7dy0.woff2') format('woff2'); 
}
"""

# 8) BUILD WITH BLOCKS
with gr.Blocks(css=css) as demo:
    gr.Markdown("""
        <div class="header-container">
            <div id="ghost-logo">👻</div>
            <h1>GhostAI Music Generator</h1>
            <p>Summon the Sound of the Unknown</p>
        </div>
    """)
    
    with gr.Column(elem_classes="input-container"):
        instrumental_prompt = gr.Textbox(
            label="Instrumental Prompt",
            placeholder="Click a genre button or type your own prompt",
            lines=4,
            elem_classes="textbox"
        )
        with gr.Row(elem_classes="genre-buttons"):
            classic_rock_btn = gr.Button("Classic Rock", elem_classes="genre-btn")
            alternative_rock_btn = gr.Button("Alternative Rock", elem_classes="genre-btn")
            detroit_techno_btn = gr.Button("Detroit Techno", elem_classes="genre-btn")
            deep_house_btn = gr.Button("Deep House", elem_classes="genre-btn")
            smooth_jazz_btn = gr.Button("Smooth Jazz", elem_classes="genre-btn")
            bebop_jazz_btn = gr.Button("Bebop Jazz", elem_classes="genre-btn")
            baroque_classical_btn = gr.Button("Baroque Classical", elem_classes="genre-btn")
            romantic_classical_btn = gr.Button("Romantic Classical", elem_classes="genre-btn")
            boom_bap_hiphop_btn = gr.Button("Boom Bap Hip-Hop", elem_classes="genre-btn")
            trap_hiphop_btn = gr.Button("Trap Hip-Hop", elem_classes="genre-btn")
            pop_rock_btn = gr.Button("Pop Rock", elem_classes="genre-btn")
            fusion_jazz_btn = gr.Button("Fusion Jazz", elem_classes="genre-btn")
            edm_btn = gr.Button("EDM", elem_classes="genre-btn")
            indie_folk_btn = gr.Button("Indie Folk", elem_classes="genre-btn")
    
    with gr.Column(elem_classes="settings-container"):
        cfg_scale = gr.Slider(
            label="Guidance Scale (CFG)",
            minimum=1.0,
            maximum=10.0,
            value=3.0,
            step=0.1,
            info="Higher values make the instrumental more closely follow the prompt."
        )
        top_k = gr.Slider(
            label="Top-K Sampling",
            minimum=10,
            maximum=500,
            value=250,
            step=10,
            info="Limits sampling to the top k most likely tokens."
        )
        top_p = gr.Slider(
            label="Top-P Sampling",
            minimum=0.0,
            maximum=1.0,
            value=0.9,
            step=0.05,
            info="Keeps tokens with cumulative probability above p."
        )
        temperature = gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=2.0,
            value=1.0,
            step=0.1,
            info="Controls randomness. Higher values make output more diverse."
        )
        total_duration = gr.Slider(
            label="Total Duration (seconds)",
            minimum=10,
            maximum=90,
            value=30,
            step=1,
            info="Total duration of the track (10 to 90 seconds)."
        )
        crossfade_duration = gr.Slider(
            label="Crossfade Duration (ms)",
            minimum=100,
            maximum=2000,
            value=500,
            step=100,
            info="Crossfade duration between chunks."
        )
        num_variations = gr.Slider(
            label="Number of Variations",
            minimum=1,
            maximum=4,
            value=1,
            step=1,
            info="Number of different versions to generate with varying random seeds."
        )
        with gr.Row(elem_classes="action-buttons"):
            gen_btn = gr.Button("Generate Music")
            clr_btn = gr.Button("Clear Inputs")
    
    with gr.Column(elem_classes="output-container"):
        out_audio = gr.Audio(label="Generated Stereo Instrumental Track", type="filepath")
        status = gr.Textbox(label="Status", interactive=False)
    
    classic_rock_btn.click(set_classic_rock_prompt, inputs=None, outputs=[instrumental_prompt])
    alternative_rock_btn.click(set_alternative_rock_prompt, inputs=None, outputs=[instrumental_prompt])
    detroit_techno_btn.click(set_detroit_techno_prompt, inputs=None, outputs=[instrumental_prompt])
    deep_house_btn.click(set_deep_house_prompt, inputs=None, outputs=[instrumental_prompt])
    smooth_jazz_btn.click(set_smooth_jazz_prompt, inputs=None, outputs=[instrumental_prompt])
    bebop_jazz_btn.click(set_bebop_jazz_prompt, inputs=None, outputs=[instrumental_prompt])
    baroque_classical_btn.click(set_baroque_classical_prompt, inputs=None, outputs=[instrumental_prompt])
    romantic_classical_btn.click(set_romantic_classical_prompt, inputs=None, outputs=[instrumental_prompt])
    boom_bap_hiphop_btn.click(set_boom_bap_hiphop_prompt, inputs=None, outputs=[instrumental_prompt])
    trap_hiphop_btn.click(set_trap_hiphop_prompt, inputs=None, outputs=[instrumental_prompt])
    pop_rock_btn.click(set_pop_rock_prompt, inputs=None, outputs=[instrumental_prompt])
    fusion_jazz_btn.click(set_fusion_jazz_prompt, inputs=None, outputs=[instrumental_prompt])
    edm_btn.click(set_edm_prompt, inputs=None, outputs=[instrumental_prompt])
    indie_folk_btn.click(set_indie_folk_prompt, inputs=None, outputs=[instrumental_prompt])
    gen_btn.click(
        generate_music,
        inputs=[instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, crossfade_duration, num_variations],
        outputs=[out_audio, status]
    )
    clr_btn.click(
        clear_inputs,
        inputs=None,
        outputs=[instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, crossfade_duration, num_variations]
    )

# 9) TURN OFF OPENAPI/DOCS
app = demo.launch(
    server_name="0.0.0.0",
    server_port=9999,
    share=False,
    inbrowser=False,
    show_error=True
)
try:
    fastapi_app = demo._server.app
    fastapi_app.docs_url = None
    fastapi_app.redoc_url = None
    fastapi_app.openapi_url = None
except Exception:
    pass