GHOSTSONAFB / appcud12.py
ghostai1's picture
Update appcud12.py
e5433cd verified
raw
history blame
42.4 kB
import os
import torch
import torchaudio
import time
import sys
import numpy as np
import gc
import gradio as gr
from pydub import AudioSegment
from audiocraft.models import MusicGen
from torch.cuda.amp import autocast
import warnings
import random
import traceback
import logging
from datetime import datetime
from pathlib import Path
import mmap
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore")
# Set PYTORCH_CUDA_ALLOC_CONF for CUDA 12
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:64"
# Optimize for CUDA 12
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# Setup logging
log_dir = "logs"
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"musicgen_log_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log")
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[
logging.FileHandler(log_file),
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
# Device setup
device = "cuda" if torch.cuda.is_available() else "cpu"
if device != "cuda":
logger.error("CUDA is required for GPU rendering. CPU rendering is disabled.")
sys.exit(1)
logger.info(f"Using GPU: {torch.cuda.get_device_name(0)} (CUDA 12)")
logger.info(f"Using precision: float16 for model, float32 for CPU processing")
# Memory cleanup function
def clean_memory():
torch.cuda.empty_cache()
gc.collect()
torch.cuda.ipc_collect()
torch.cuda.synchronize()
vram_mb = torch.cuda.memory_allocated() / 1024**2
logger.info(f"Memory cleaned: VRAM allocated = {vram_mb:.2f} MB")
logger.debug(f"VRAM summary: {torch.cuda.memory_summary()}")
return vram_mb
# Pre-run memory cleanup
clean_memory()
# Load MusicGen medium model into VRAM
try:
logger.info("Loading MusicGen medium model into VRAM...")
local_model_path = "./models/musicgen-medium"
if not os.path.exists(local_model_path):
logger.error(f"Local model path {local_model_path} does not exist.")
logger.error("Please download the MusicGen medium model weights and place them in the correct directory.")
sys.exit(1)
musicgen_model = MusicGen.get_pretrained(local_model_path, device=device)
musicgen_model.set_generation_params(
duration=30, # Strict 30s max per chunk
two_step_cfg=False
)
logger.info("MusicGen medium model loaded successfully.")
except Exception as e:
logger.error(f"Failed to load MusicGen model: {e}")
logger.error(traceback.format_exc())
sys.exit(1)
# Check disk space
def check_disk_space(path="."):
stat = os.statvfs(path)
free_space = stat.f_bavail * stat.f_frsize / (1024**3) # Free space in GB
if free_space < 1.0:
logger.warning(f"Low disk space ({free_space:.2f} GB). Ensure at least 1 GB free.")
return free_space >= 1.0
# Audio processing functions (CPU-based)
def balance_stereo(audio_segment, noise_threshold=-60, sample_rate=16000):
logger.debug(f"Balancing stereo for segment with sample rate {sample_rate}")
samples = np.array(audio_segment.get_array_of_samples(), dtype=np.float32)
if audio_segment.channels == 2:
stereo_samples = samples.reshape(-1, 2)
db_samples = 20 * np.log10(np.abs(stereo_samples) + 1e-10)
mask = db_samples > noise_threshold
stereo_samples = stereo_samples * mask
left_nonzero = stereo_samples[:, 0][stereo_samples[:, 0] != 0]
right_nonzero = stereo_samples[:, 1][stereo_samples[:, 1] != 0]
left_rms = np.sqrt(np.mean(left_nonzero**2)) if len(left_nonzero) > 0 else 0
right_rms = np.sqrt(np.mean(right_nonzero**2)) if len(right_nonzero) > 0 else 0
if left_rms > 0 and right_rms > 0:
avg_rms = (left_rms + right_rms) / 2
stereo_samples[:, 0] = stereo_samples[:, 0] * (avg_rms / left_rms)
stereo_samples[:, 1] = stereo_samples[:, 1] * (avg_rms / right_rms)
balanced_samples = stereo_samples.flatten().astype(np.int16)
balanced_segment = AudioSegment(
balanced_samples.tobytes(),
frame_rate=sample_rate,
sample_width=audio_segment.sample_width,
channels=2
)
logger.debug("Stereo balancing completed")
return balanced_segment
logger.debug("Segment is not stereo, returning unchanged")
return audio_segment
def calculate_rms(segment):
samples = np.array(segment.get_array_of_samples(), dtype=np.float32)
rms = np.sqrt(np.mean(samples**2))
logger.debug(f"Calculated RMS: {rms}")
return rms
def rms_normalize(segment, target_rms_db=-23.0, peak_limit_db=-3.0, sample_rate=16000):
logger.debug(f"Normalizing RMS for segment with target {target_rms_db} dBFS")
target_rms = 10 ** (target_rms_db / 20) * 32767
current_rms = calculate_rms(segment)
if current_rms > 0:
gain_factor = target_rms / current_rms
segment = segment.apply_gain(20 * np.log10(gain_factor))
segment = hard_limit(segment, limit_db=peak_limit_db, sample_rate=sample_rate)
logger.debug("RMS normalization completed")
return segment
def hard_limit(audio_segment, limit_db=-3.0, sample_rate=16000):
logger.debug(f"Applying hard limit at {limit_db} dBFS")
limit = 10 ** (limit_db / 20.0) * 32767
samples = np.array(audio_segment.get_array_of_samples(), dtype=np.float32)
samples = np.clip(samples, -limit, limit).astype(np.int16)
limited_segment = AudioSegment(
samples.tobytes(),
frame_rate=sample_rate,
sample_width=audio_segment.sample_width,
channels=audio_segment.channels
)
logger.debug("Hard limit applied")
return limited_segment
def apply_eq(segment, sample_rate=16000):
logger.debug(f"Applying EQ with sample rate {sample_rate}")
segment = segment.high_pass_filter(20)
segment = segment.low_pass_filter(20000)
logger.debug("EQ applied")
return segment
def apply_fade(segment, fade_in_duration=500, fade_out_duration=500):
logger.debug(f"Applying fade: in={fade_in_duration}ms, out={fade_out_duration}ms")
segment = segment.fade_in(fade_in_duration)
segment = segment.fade_out(fade_out_duration)
logger.debug("Fade applied")
return segment
# Genre prompt functions
def set_red_hot_chili_peppers_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("strong rhythmic steps" if bpm > 120 else "groovy rhythmic flow")
drum = f", {drum_beat} drums" if drum_beat != "none" else ""
synth = f", {synthesizer} accents" if synthesizer != "none" else ""
bass = f", {bass_style}" if bass_style != "none" else ", groovy basslines"
guitar = f", {guitar_style} guitar riffs" if guitar_style != "none" else ", syncopated guitar riffs"
prompt = f"Instrumental funk rock{bass}{guitar}{drum}{synth}, Red Hot Chili Peppers-inspired vibe with dynamic energy and funky breakdowns, {rhythm} at {bpm} BPM."
logger.debug(f"Generated RHCP prompt: {prompt}")
return prompt
def set_nirvana_grunge_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("intense rhythmic steps" if bpm > 120 else "grungy rhythmic pulse")
drum = f", {drum_beat} drums" if drum_beat != "none" else ""
synth = f", {synthesizer} accents" if synthesizer != "none" else ""
bass = f", {bass_style}" if bass_style != "none" else ", melodic basslines"
guitar = f", {guitar_style} guitar riffs" if guitar_style != "none" else ", raw distorted guitar riffs"
prompt = f"Instrumental grunge{bass}{guitar}{drum}{synth}, Nirvana-inspired angst-filled sound with quiet-loud dynamics, {rhythm} at {bpm} BPM."
logger.debug(f"Generated Nirvana prompt: {prompt}")
return prompt
def set_pearl_jam_grunge_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("soulful rhythmic steps" if bpm > 120 else "driving rhythmic flow")
drum = f", {drum_beat} drums" if drum_beat != "none" else ""
synth = f", {synthesizer} accents" if synthesizer != "none" else ""
bass = f", {bass_style}" if bass_style != "none" else ", deep bass"
guitar = f", {guitar_style} guitar leads" if guitar_style != "none" else ", soulful guitar leads"
prompt = f"Instrumental grunge{bass}{guitar}{drum}{synth}, Pearl Jam-inspired emotional intensity with soaring choruses, {rhythm} at {bpm} BPM."
logger.debug(f"Generated Pearl Jam prompt: {prompt}")
return prompt
def set_soundgarden_grunge_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("heavy rhythmic steps" if bpm > 120 else "sludgy rhythmic groove")
drum = f", {drum_beat} drums" if drum_beat != "none" else ""
synth = f", {synthesizer} accents" if synthesizer != "none" else ""
bass = f", {bass_style}" if bass_style != "none" else ""
guitar = f", {guitar_style} guitar riffs" if guitar_style != "none" else ", heavy sludgy guitar riffs"
prompt = f"Instrumental grunge{bass}{guitar}{drum}{synth}, Soundgarden-inspired dark, psychedelic edge, {rhythm} at {bpm} BPM."
logger.debug(f"Generated Soundgarden prompt: {prompt}")
return prompt
def set_foo_fighters_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
styles = ["anthemic", "gritty", "melodic", "fast-paced", "driving"]
tempos = ["upbeat", "mid-tempo", "high-energy"]
moods = ["energetic", "introspective", "rebellious", "uplifting"]
style = random.choice(styles)
tempo = random.choice(tempos)
mood = random.choice(moods)
rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("powerful rhythmic steps" if bpm > 120 else "catchy rhythmic groove")
drum = f", {drum_beat} drums" if drum_beat != "none" else ""
synth = f", {synthesizer} accents" if synthesizer != "none" else ""
bass = f", {bass_style}" if bass_style != "none" else ""
guitar = f", {guitar_style} guitar riffs" if guitar_style != "none" else f", {style} guitar riffs"
prompt = f"Instrumental alternative rock{bass}{guitar}{drum}{synth}, Foo Fighters-inspired {mood} vibe with powerful choruses, {rhythm} at {bpm} BPM."
logger.debug(f"Generated Foo Fighters prompt: {prompt}")
return prompt
def set_smashing_pumpkins_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("dynamic rhythmic steps" if bpm > 120 else "dreamy rhythmic flow")
drum = f", {drum_beat} drums" if drum_beat != "none" else ""
synth = f", {synthesizer} accents" if synthesizer != "none" else ""
bass = f", {bass_style}" if bass_style != "none" else ""
guitar = f", {guitar_style} guitar textures" if guitar_style != "none" else ", dreamy guitar textures"
prompt = f"Instrumental alternative rock{bass}{guitar}{drum}{synth}, Smashing Pumpkins-inspired blend of melancholy and aggression, {rhythm} at {bpm} BPM."
logger.debug(f"Generated Smashing Pumpkins prompt: {prompt}")
return prompt
def set_radiohead_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("complex rhythmic steps" if bpm > 120 else "intricate rhythmic pulse")
drum = f", {drum_beat} drums" if drum_beat != "none" else ""
synth = f", {synthesizer} accents" if synthesizer != "none" else ", atmospheric synths"
bass = f", {bass_style}" if bass_style != "none" else ""
guitar = f", {guitar_style} guitar layers" if guitar_style != "none" else ", intricate guitar layers"
prompt = f"Instrumental experimental rock{bass}{guitar}{drum}{synth}, Radiohead-inspired blend of introspective and innovative soundscapes, {rhythm} at {bpm} BPM."
logger.debug(f"Generated Radiohead prompt: {prompt}")
return prompt
def set_classic_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("bluesy rhythmic steps" if bpm > 120 else "steady rhythmic groove")
drum = f", {drum_beat} drums" if drum_beat != "none" else ""
synth = f", {synthesizer} accents" if synthesizer != "none" else ""
bass = f", {bass_style}" if bass_style != "none" else ", groovy bass"
guitar = f", {guitar_style} electric guitars" if guitar_style != "none" else ", bluesy electric guitars"
prompt = f"Instrumental classic rock{bass}{guitar}{drum}{synth}, Led Zeppelin-inspired raw energy with dynamic solos, {rhythm} at {bpm} BPM."
logger.debug(f"Generated Classic Rock prompt: {prompt}")
return prompt
def set_alternative_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("quirky rhythmic steps" if bpm > 120 else "energetic rhythmic flow")
drum = f", {drum_beat} drums" if drum_beat != "none" else ""
synth = f", {synthesizer} accents" if synthesizer != "none" else ""
bass = f", {bass_style}" if bass_style != "none" else ", melodic basslines"
guitar = f", {guitar_style} guitar riffs" if guitar_style != "none" else ", distorted guitar riffs"
prompt = f"Instrumental alternative rock{bass}{guitar}{drum}{synth}, Pixies-inspired quirky, energetic vibe, {rhythm} at {bpm} BPM."
logger.debug(f"Generated Alternative Rock prompt: {prompt}")
return prompt
def set_post_punk_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("sharp rhythmic steps" if bpm > 120 else "moody rhythmic pulse")
drum = f", {drum_beat} drums" if drum_beat != "none" else ""
synth = f", {synthesizer} accents" if synthesizer != "none" else ""
bass = f", {bass_style}" if bass_style != "none" else ", driving basslines"
guitar = f", {guitar_style} guitars" if guitar_style != "none" else ", jangly guitars"
prompt = f"Instrumental post-punk{bass}{guitar}{drum}{synth}, Joy Division-inspired moody, atmospheric sound with a steady, hypnotic beat, {rhythm} at {bpm} BPM."
logger.debug(f"Generated Post-Punk prompt: {prompt}")
return prompt
def set_indie_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("catchy rhythmic steps" if bpm > 120 else "jangly rhythmic flow")
drum = f", {drum_beat} drums" if drum_beat != "none" else ""
synth = f", {synthesizer} accents" if synthesizer != "none" else ""
bass = f", {bass_style}" if bass_style != "none" else ""
guitar = f", {guitar_style} guitars" if guitar_style != "none" else ", jangly guitars"
prompt = f"Instrumental indie rock{bass}{guitar}{drum}{synth}, Arctic Monkeys-inspired blend of catchy riffs, {rhythm} at {bpm} BPM."
logger.debug(f"Generated Indie Rock prompt: {prompt}")
return prompt
def set_funk_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("aggressive rhythmic steps" if bpm > 120 else "funky rhythmic groove")
drum = f", {drum_beat} drums" if drum_beat != "none" else ""
synth = f", {synthesizer} accents" if synthesizer != "none" else ""
bass = f", {bass_style}" if bass_style != "none" else ", slap bass"
guitar = f", {guitar_style} guitar chords" if guitar_style != "none" else ", funky guitar chords"
prompt = f"Instrumental funk rock{bass}{guitar}{drum}{synth}, Rage Against the Machine-inspired mix of groove and aggression, {rhythm} at {bpm} BPM."
logger.debug(f"Generated Funk Rock prompt: {prompt}")
return prompt
def set_detroit_techno_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("pulsing rhythmic steps" if bpm > 120 else "deep rhythmic groove")
drum = f", {drum_beat} drums" if drum_beat != "none" else ", crisp hi-hats and a steady four-on-the-floor kick drum"
synth = f", {synthesizer} accents" if synthesizer != "none" else ", deep pulsing synths with a repetitive, hypnotic pattern"
bass = f", {bass_style}" if bass_style != "none" else ", driving basslines with a consistent, groovy pulse"
guitar = f", {guitar_style} guitars" if guitar_style != "none" else ""
prompt = f"Instrumental Detroit techno{bass}{guitar}{drum}{synth}, Juan Atkins-inspired rhythmic groove with a steady, repetitive beat, {rhythm} at {bpm} BPM."
logger.debug(f"Generated Detroit Techno prompt: {prompt}")
return prompt
def set_deep_house_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("soulful rhythmic steps" if bpm > 120 else "laid-back rhythmic flow")
drum = f", {drum_beat} drums" if drum_beat != "none" else ", steady four-on-the-floor kick drum with soft hi-hats"
synth = f", {synthesizer} accents" if synthesizer != "none" else ", warm analog synth chords with a repetitive, hypnotic progression"
bass = f", {bass_style}" if bass_style != "none" else ", deep basslines with a consistent, groovy pulse"
guitar = f", {guitar_style} guitars" if guitar_style != "none" else ""
prompt = f"Instrumental deep house{bass}{guitar}{drum}{synth}, Larry Heard-inspired laid-back groove with a steady, repetitive beat, {rhythm} at {bpm} BPM."
logger.debug(f"Generated Deep House prompt: {prompt}")
return prompt
# Preset configurations for genres (optimized for medium model)
PRESETS = {
"default": {"cfg_scale": 2.0, "top_k": 150, "top_p": 0.9, "temperature": 0.8},
"rock": {"cfg_scale": 2.5, "top_k": 140, "top_p": 0.9, "temperature": 0.9},
"techno": {"cfg_scale": 1.8, "top_k": 160, "top_p": 0.85, "temperature": 0.7},
"grunge": {"cfg_scale": 2.0, "top_k": 150, "top_p": 0.9, "temperature": 0.85},
"indie": {"cfg_scale": 2.2, "top_k": 145, "top_p": 0.9, "temperature": 0.8}
}
# Function to get the latest log file
def get_latest_log():
log_files = sorted(Path(log_dir).glob("musicgen_log_*.log"), key=os.path.getmtime, reverse=True)
if not log_files:
logger.warning("No log files found")
return "No log files found."
try:
with open(log_files[0], "r") as f:
content = f.read()
logger.info(f"Retrieved latest log file: {log_files[0]}")
return content
except Exception as e:
logger.error(f"Failed to read log file {log_files[0]}: {e}")
return f"Error reading log file: {e}"
# Optimized generation function
def generate_music(instrumental_prompt: str, cfg_scale: float, top_k: int, top_p: float, temperature: float, total_duration: int, bpm: int, drum_beat: str, synthesizer: str, rhythmic_steps: str, bass_style: str, guitar_style: str, target_volume: float, preset: str, vram_status: str):
global musicgen_model
if not instrumental_prompt.strip():
logger.warning("Empty instrumental prompt provided")
return None, "⚠️ Please enter a valid instrumental prompt!", vram_status
try:
logger.info("Starting music generation...")
start_time = time.time()
max_duration = 30 # Strict 30s max per chunk
total_duration = min(max(total_duration, 30), 120) # Clamp between 30s and 120s
processing_sample_rate = 16000 # Lower for processing
output_sample_rate = 32000 # MusicGen's native rate
audio_segments = []
overlap_duration = 0.3 # 300ms for continuation and crossfade
remaining_duration = total_duration
if preset != "default":
preset_params = PRESETS.get(preset, PRESETS["default"])
cfg_scale = preset_params["cfg_scale"]
top_k = preset_params["top_k"]
top_p = preset_params["top_p"]
temperature = preset_params["temperature"]
logger.info(f"Applied preset {preset}: cfg_scale={cfg_scale}, top_k={top_k}, top_p={top_p}, temperature={temperature}")
if not check_disk_space():
logger.error("Insufficient disk space")
return None, "⚠️ Insufficient disk space. Free up at least 1 GB.", vram_status
logger.info(f"Generating audio for {total_duration}s with seed=42")
seed = 42
base_prompt = instrumental_prompt
clean_memory()
vram_status = f"Initial VRAM: {torch.cuda.memory_allocated() / 1024**2:.2f} MB"
while remaining_duration > 0:
current_duration = min(max_duration, remaining_duration)
generation_duration = current_duration # No overlap in generation
chunk_num = len(audio_segments) + 1
logger.info(f"Generating chunk {chunk_num} ({current_duration}s, VRAM: {torch.cuda.memory_allocated() / 1024**2:.2f} MB)")
musicgen_model.set_generation_params(
duration=generation_duration,
use_sampling=True,
top_k=top_k,
top_p=top_p,
temperature=temperature,
cfg_coef=cfg_scale
)
try:
with torch.no_grad():
with autocast(dtype=torch.float16):
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed_all(seed)
clean_memory() # Pre-generation cleanup
if not audio_segments:
logger.debug("Generating first chunk")
audio_segment = musicgen_model.generate([base_prompt], progress=True)[0].cpu()
else:
logger.debug("Generating continuation chunk")
prev_segment = audio_segments[-1]
prev_segment = balance_stereo(prev_segment, noise_threshold=-60, sample_rate=processing_sample_rate)
temp_wav_path = f"temp_prev_{int(time.time()*1000)}.wav"
logger.debug(f"Exporting previous segment to {temp_wav_path}")
prev_segment.export(temp_wav_path, format="wav")
# Use memory-mapped file I/O
with open(temp_wav_path, "rb") as f:
mmapped_file = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ)
prev_audio, prev_sr = torchaudio.load(temp_wav_path)
mmapped_file.close()
if prev_sr != processing_sample_rate:
logger.debug(f"Resampling from {prev_sr} to {processing_sample_rate}")
prev_audio = torchaudio.transforms.Resample(prev_sr, processing_sample_rate)(prev_audio)
prev_audio = prev_audio.to(device)
os.remove(temp_wav_path)
logger.debug(f"Deleted temporary file {temp_wav_path}")
audio_segment = musicgen_model.generate_continuation(
prompt=prev_audio[:, -int(processing_sample_rate * overlap_duration):],
prompt_sample_rate=processing_sample_rate,
descriptions=[base_prompt],
progress=True
)[0].cpu()
del prev_audio
clean_memory()
except Exception as e:
logger.error(f"Error in chunk {chunk_num} generation: {e}")
logger.error(traceback.format_exc())
raise e
logger.debug(f"Generated audio segment shape: {audio_segment.shape}")
audio_segment = audio_segment.to(dtype=torch.float32)
if audio_segment.dim() == 1:
logger.debug("Converting mono to stereo")
audio_segment = torch.stack([audio_segment, audio_segment], dim=0)
elif audio_segment.dim() == 2 and audio_segment.shape[0] != 2:
logger.debug("Adjusting to stereo")
audio_segment = torch.cat([audio_segment, audio_segment], dim=0)
if audio_segment.shape[0] != 2:
logger.error(f"Expected stereo audio with shape (2, samples), got shape {audio_segment.shape}")
raise ValueError(f"Expected stereo audio with shape (2, samples), got shape {audio_segment.shape}")
temp_wav_path = f"temp_audio_{int(time.time()*1000)}.wav"
logger.debug(f"Saving audio segment to {temp_wav_path}")
torchaudio.save(temp_wav_path, audio_segment, output_sample_rate, bits_per_sample=16)
segment = AudioSegment.from_wav(temp_wav_path)
os.remove(temp_wav_path)
logger.debug(f"Deleted temporary file {temp_wav_path}")
segment = segment - 15
if segment.frame_rate != processing_sample_rate:
logger.debug(f"Setting segment sample rate to {processing_sample_rate}")
segment = segment.set_frame_rate(processing_sample_rate)
segment = balance_stereo(segment, noise_threshold=-60, sample_rate=processing_sample_rate)
segment = rms_normalize(segment, target_rms_db=target_volume, peak_limit_db=-3.0, sample_rate=processing_sample_rate)
segment = apply_eq(segment, sample_rate=processing_sample_rate)
audio_segments.append(segment)
del audio_segment
clean_memory()
vram_status = f"VRAM after chunk {chunk_num}: {torch.cuda.memory_allocated() / 1024**2:.2f} MB"
time.sleep(0.1)
remaining_duration -= current_duration
logger.info("Combining audio chunks...")
final_segment = audio_segments[0][:min(max_duration, total_duration) * 1000]
overlap_ms = int(overlap_duration * 1000)
for i in range(1, len(audio_segments)):
current_segment = audio_segments[i]
current_segment = current_segment[:min(max_duration, total_duration - (i * max_duration)) * 1000]
if overlap_ms > 0 and len(current_segment) > overlap_ms:
logger.debug(f"Applying crossfade between chunks {i} and {i+1}")
prev_overlap = final_segment[-overlap_ms:]
curr_overlap = current_segment[:overlap_ms]
num_samples = len(np.array(prev_overlap.get_array_of_samples(), dtype=np.float32)) // 2
blended_samples = np.zeros((num_samples, 2), dtype=np.float32)
prev_samples = np.array(prev_overlap.get_array_of_samples(), dtype=np.float32).reshape(-1, 2)
curr_samples = np.array(curr_overlap.get_array_of_samples(), dtype=np.float32).reshape(-1, 2)
hann_window = 0.5 * (1 - np.cos(2 * np.pi * np.arange(num_samples) / num_samples))
fade_out = hann_window[::-1]
fade_in = hann_window
blended_samples = (prev_samples * fade_out[:, None] + curr_samples * fade_in[:, None])
blended_segment = AudioSegment(
blended_samples.astype(np.int16).tobytes(),
frame_rate=processing_sample_rate,
sample_width=2,
channels=2
)
blended_segment = rms_normalize(blended_segment, target_rms_db=target_volume, peak_limit_db=-3.0, sample_rate=processing_sample_rate)
final_segment = final_segment[:-overlap_ms] + blended_segment + current_segment[overlap_ms:]
else:
logger.debug(f"Concatenating chunk {i+1} without crossfade")
final_segment += current_segment
final_segment = final_segment[:total_duration * 1000]
logger.info("Post-processing final track...")
final_segment = rms_normalize(final_segment, target_rms_db=target_volume, peak_limit_db=-3.0, sample_rate=processing_sample_rate)
final_segment = apply_eq(final_segment, sample_rate=processing_sample_rate)
final_segment = apply_fade(final_segment)
final_segment = balance_stereo(final_segment, noise_threshold=-60, sample_rate=processing_sample_rate)
final_segment = final_segment - 10
final_segment = final_segment.set_frame_rate(output_sample_rate) # Upsample to output rate
mp3_path = f"output_adjusted_volume_{int(time.time())}.mp3"
logger.info("⚠️ WARNING: Audio is set to safe levels (~ -23 dBFS RMS, -3 dBFS peak). Start playback at LOW volume (10-20%) and adjust gradually.")
logger.info("VERIFY: Open the file in Audacity to check for static. RMS should be ~ -23 dBFS, peaks ≀ -3 dBFS. Report any static or issues.")
try:
logger.debug(f"Exporting final audio to {mp3_path}")
final_segment.export(
mp3_path,
format="mp3",
bitrate="96k",
tags={"title": "GhostAI Instrumental", "artist": "GhostAI"}
)
logger.info(f"Final audio saved to {mp3_path}")
except Exception as e:
logger.error(f"Error exporting MP3: {e}")
fallback_path = f"fallback_output_{int(time.time())}.mp3"
try:
final_segment.export(fallback_path, format="mp3", bitrate="96k")
logger.info(f"Final audio saved to fallback: {fallback_path}")
mp3_path = fallback_path
except Exception as fallback_e:
logger.error(f"Failed to save fallback MP3: {fallback_e}")
raise e
vram_status = f"Final VRAM: {torch.cuda.memory_allocated() / 1024**2:.2f} MB"
logger.info(f"Generation completed in {time.time() - start_time:.2f} seconds")
return mp3_path, "βœ… Done! Generated static-free track with adjusted volume levels.", vram_status
except Exception as e:
logger.error(f"Generation failed: {e}")
logger.error(traceback.format_exc())
return None, f"❌ Generation failed: {e}", vram_status
finally:
clean_memory()
# Clear inputs function
def clear_inputs():
logger.info("Clearing input fields")
return "", 2.0, 150, 0.9, 0.8, 30, 120, "none", "none", "none", "none", "none", -23.0, "default", ""
# Custom CSS
css = """
body {
background: linear-gradient(135deg, #0A0A0A 0%, #1C2526 100%);
color: #E0E0E0;
font-family: 'Orbitron', sans-serif;
}
.header-container {
text-align: center;
padding: 10px 20px;
background: rgba(0, 0, 0, 0.9);
border-bottom: 1px solid #00FF9F;
}
#ghost-logo {
font-size: 40px;
animation: glitch-ghost 1.5s infinite;
}
h1 {
color: #A100FF;
font-size: 24px;
animation: glitch-text 2s infinite;
}
p {
color: #E0E0E0;
font-size: 12px;
}
.input-container, .settings-container, .output-container, .logs-container {
max-width: 1200px;
margin: 20px auto;
padding: 20px;
background: rgba(28, 37, 38, 0.8);
border-radius: 10px;
}
.textbox {
background: #1A1A1A;
border: 1px solid #A100FF;
color: #E0E0E0;
}
.genre-buttons {
display: flex;
justify-content: center;
flex-wrap: wrap;
gap: 15px;
}
.genre-btn, button {
background: linear-gradient(45deg, #A100FF, #00FF9F);
border: none;
color: #0A0A0A;
padding: 10px 20px;
border-radius: 5px;
}
.gradio-container {
padding: 20px;
}
.group-container {
margin-bottom: 20px;
padding: 15px;
border: 1px solid #00FF9F;
border-radius: 8px;
}
@keyframes glitch-ghost {
0% { transform: translate(0, 0); opacity: 1; }
20% { transform: translate(-5px, 2px); opacity: 0.8; }
100% { transform: translate(0, 0); opacity: 1; }
}
@keyframes glitch-text {
0% { transform: translate(0, 0); }
20% { transform: translate(-2px, 1px); }
100% { transform: translate(0, 0); }
}
@font-face {
font-family: 'Orbitron';
src: url('https://fonts.gstatic.com/s/orbitron/v29/yMJRMIlzdpvBhQQL_Qq7dy0.woff2') format('woff2');
}
"""
# Build Gradio interface
logger.info("Building Gradio interface...")
with gr.Blocks(css=css) as demo:
gr.Markdown("""
<div class="header-container">
<div id="ghost-logo">πŸ‘»</div>
<h1>GhostAI Music Generator 🎹</h1>
<p>Summon the Sound of the Unknown</p>
</div>
""")
with gr.Column(elem_classes="input-container"):
gr.Markdown("### 🎸 Prompt Settings")
instrumental_prompt = gr.Textbox(
label="Instrumental Prompt ✍️",
placeholder="Click a genre button or type your own instrumental prompt",
lines=4,
elem_classes="textbox"
)
with gr.Row(elem_classes="genre-buttons"):
rhcp_btn = gr.Button("Red Hot Chili Peppers 🌢️", elem_classes="genre-btn")
nirvana_btn = gr.Button("Nirvana Grunge 🎸", elem_classes="genre-btn")
pearl_jam_btn = gr.Button("Pearl Jam Grunge πŸ¦ͺ", elem_classes="genre-btn")
soundgarden_btn = gr.Button("Soundgarden Grunge πŸŒ‘", elem_classes="genre-btn")
foo_fighters_btn = gr.Button("Foo Fighters 🀘", elem_classes="genre-btn")
smashing_pumpkins_btn = gr.Button("Smashing Pumpkins πŸŽƒ", elem_classes="genre-btn")
radiohead_btn = gr.Button("Radiohead 🧠", elem_classes="genre-btn")
classic_rock_btn = gr.Button("Classic Rock 🎸", elem_classes="genre-btn")
alternative_rock_btn = gr.Button("Alternative Rock 🎡", elem_classes="genre-btn")
post_punk_btn = gr.Button("Post-Punk πŸ–€", elem_classes="genre-btn")
indie_rock_btn = gr.Button("Indie Rock 🎀", elem_classes="genre-btn")
funk_rock_btn = gr.Button("Funk Rock πŸ•Ί", elem_classes="genre-btn")
detroit_techno_btn = gr.Button("Detroit Techno πŸŽ›οΈ", elem_classes="genre-btn")
deep_house_btn = gr.Button("Deep House 🏠", elem_classes="genre-btn")
with gr.Column(elem_classes="settings-container"):
gr.Markdown("### βš™οΈ API Settings")
with gr.Group(elem_classes="group-container"):
cfg_scale = gr.Slider(
label="CFG Scale 🎯",
minimum=1.0,
maximum=10.0,
value=2.0,
step=0.1,
info="Controls how closely the music follows the prompt."
)
top_k = gr.Slider(
label="Top-K Sampling πŸ”’",
minimum=10,
maximum=500,
value=150,
step=10,
info="Limits sampling to the top k most likely tokens."
)
top_p = gr.Slider(
label="Top-P Sampling 🎰",
minimum=0.0,
maximum=1.0,
value=0.9,
step=0.05,
info="Keeps tokens with cumulative probability above p."
)
temperature = gr.Slider(
label="Temperature πŸ”₯",
minimum=0.1,
maximum=2.0,
value=0.8,
step=0.1,
info="Controls randomness; lower values reduce noise."
)
total_duration = gr.Dropdown(
label="Song Length ⏳ (seconds)",
choices=[30, 60, 90, 120],
value=30,
info="Select the total duration of the track."
)
bpm = gr.Slider(
label="Tempo 🎡 (BPM)",
minimum=60,
maximum=180,
value=120,
step=1,
info="Beats per minute to set the track's tempo."
)
drum_beat = gr.Dropdown(
label="Drum Beat πŸ₯",
choices=["none", "standard rock", "funk groove", "techno kick", "jazz swing"],
value="none",
info="Select a drum beat style to influence the rhythm."
)
synthesizer = gr.Dropdown(
label="Synthesizer 🎹",
choices=["none", "analog synth", "digital pad", "arpeggiated synth"],
value="none",
info="Select a synthesizer style for electronic accents."
)
rhythmic_steps = gr.Dropdown(
label="Rhythmic Steps πŸ‘£",
choices=["none", "syncopated steps", "steady steps", "complex steps"],
value="none",
info="Select a rhythmic step style to enhance the beat."
)
bass_style = gr.Dropdown(
label="Bass Style 🎸",
choices=["none", "slap bass", "deep bass", "melodic bass"],
value="none",
info="Select a bass style to shape the low end."
)
guitar_style = gr.Dropdown(
label="Guitar Style 🎸",
choices=["none", "distorted", "clean", "jangle"],
value="none",
info="Select a guitar style to define the riffs."
)
target_volume = gr.Slider(
label="Target Volume 🎚️ (dBFS RMS)",
minimum=-30.0,
maximum=-20.0,
value=-23.0,
step=1.0,
info="Adjust output loudness (-23 dBFS is standard, -20 dBFS is louder, -30 dBFS is quieter)."
)
preset = gr.Dropdown(
label="Preset Configuration πŸŽ›οΈ",
choices=["default", "rock", "techno", "grunge", "indie"],
value="default",
info="Select a preset optimized for specific genres."
)
with gr.Row(elem_classes="action-buttons"):
gen_btn = gr.Button("Generate Music πŸš€")
clr_btn = gr.Button("Clear Inputs 🧹")
with gr.Column(elem_classes="output-container"):
gr.Markdown("### 🎧 Output")
out_audio = gr.Audio(label="Generated Instrumental Track 🎡", type="filepath")
status = gr.Textbox(label="Status πŸ“’", interactive=False)
vram_status = gr.Textbox(label="VRAM Usage πŸ“Š", interactive=False, value="")
with gr.Column(elem_classes="logs-container"):
gr.Markdown("### πŸ“œ Logs")
log_output = gr.Textbox(label="Last Log File Contents", lines=20, interactive=False)
log_btn = gr.Button("View Last Log πŸ“‹")
rhcp_btn.click(set_red_hot_chili_peppers_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt)
nirvana_btn.click(set_nirvana_grunge_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt)
pearl_jam_btn.click(set_pearl_jam_grunge_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt)
soundgarden_btn.click(set_soundgarden_grunge_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt)
foo_fighters_btn.click(set_foo_fighters_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt)
smashing_pumpkins_btn.click(set_smashing_pumpkins_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt)
radiohead_btn.click(set_radiohead_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt)
classic_rock_btn.click(set_classic_rock_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt)
alternative_rock_btn.click(set_alternative_rock_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt)
post_punk_btn.click(set_post_punk_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt)
indie_rock_btn.click(set_indie_rock_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt)
funk_rock_btn.click(set_funk_rock_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt)
detroit_techno_btn.click(set_detroit_techno_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt)
deep_house_btn.click(set_deep_house_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt)
gen_btn.click(
generate_music,
inputs=[instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, target_volume, preset, vram_status],
outputs=[out_audio, status, vram_status]
)
clr_btn.click(
clear_inputs,
inputs=None,
outputs=[instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, target_volume, preset, vram_status]
)
log_btn.click(
get_latest_log,
inputs=None,
outputs=log_output
)
# Launch locally without OpenAPI/docs
logger.info("Launching Gradio UI at http://localhost:9999...")
app = demo.launch(
server_name="0.0.0.0",
server_port=9999,
share=False,
inbrowser=False,
show_error=True
)
try:
fastapi_app = demo._server.app
fastapi_app.docs_url = None
fastapi_app.redoc_url = None
fastapi_app.openapi_url = None
except Exception as e:
logger.error(f"Failed to configure FastAPI app: {e}")