import os import torch import torchaudio import time import sys import numpy as np import gc import gradio as gr from pydub import AudioSegment from audiocraft.models import MusicGen from torch.cuda.amp import autocast import warnings import random import traceback import logging from datetime import datetime from pathlib import Path import mmap # Suppress warnings for cleaner output warnings.filterwarnings("ignore") # Set PYTORCH_CUDA_ALLOC_CONF for CUDA 12 os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:64" # Optimize for CUDA 12 torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True # Setup logging log_dir = "logs" os.makedirs(log_dir, exist_ok=True) log_file = os.path.join(log_dir, f"musicgen_log_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log") logging.basicConfig( level=logging.DEBUG, format="%(asctime)s [%(levelname)s] %(message)s", handlers=[ logging.FileHandler(log_file), logging.StreamHandler(sys.stdout) ] ) logger = logging.getLogger(__name__) # Device setup device = "cuda" if torch.cuda.is_available() else "cpu" if device != "cuda": logger.error("CUDA is required for GPU rendering. CPU rendering is disabled.") sys.exit(1) logger.info(f"Using GPU: {torch.cuda.get_device_name(0)} (CUDA 12)") logger.info(f"Using precision: float16 for model, float32 for CPU processing") # Memory cleanup function def clean_memory(): torch.cuda.empty_cache() gc.collect() torch.cuda.ipc_collect() torch.cuda.synchronize() vram_mb = torch.cuda.memory_allocated() / 1024**2 logger.info(f"Memory cleaned: VRAM allocated = {vram_mb:.2f} MB") logger.debug(f"VRAM summary: {torch.cuda.memory_summary()}") return vram_mb # Pre-run memory cleanup clean_memory() # Load MusicGen medium model into VRAM try: logger.info("Loading MusicGen medium model into VRAM...") local_model_path = "./models/musicgen-medium" if not os.path.exists(local_model_path): logger.error(f"Local model path {local_model_path} does not exist.") logger.error("Please download the MusicGen medium model weights and place them in the correct directory.") sys.exit(1) musicgen_model = MusicGen.get_pretrained(local_model_path, device=device) musicgen_model.set_generation_params( duration=30, # Strict 30s max per chunk two_step_cfg=False ) logger.info("MusicGen medium model loaded successfully.") except Exception as e: logger.error(f"Failed to load MusicGen model: {e}") logger.error(traceback.format_exc()) sys.exit(1) # Check disk space def check_disk_space(path="."): stat = os.statvfs(path) free_space = stat.f_bavail * stat.f_frsize / (1024**3) # Free space in GB if free_space < 1.0: logger.warning(f"Low disk space ({free_space:.2f} GB). Ensure at least 1 GB free.") return free_space >= 1.0 # Audio processing functions (CPU-based) def balance_stereo(audio_segment, noise_threshold=-60, sample_rate=16000): logger.debug(f"Balancing stereo for segment with sample rate {sample_rate}") samples = np.array(audio_segment.get_array_of_samples(), dtype=np.float32) if audio_segment.channels == 2: stereo_samples = samples.reshape(-1, 2) db_samples = 20 * np.log10(np.abs(stereo_samples) + 1e-10) mask = db_samples > noise_threshold stereo_samples = stereo_samples * mask left_nonzero = stereo_samples[:, 0][stereo_samples[:, 0] != 0] right_nonzero = stereo_samples[:, 1][stereo_samples[:, 1] != 0] left_rms = np.sqrt(np.mean(left_nonzero**2)) if len(left_nonzero) > 0 else 0 right_rms = np.sqrt(np.mean(right_nonzero**2)) if len(right_nonzero) > 0 else 0 if left_rms > 0 and right_rms > 0: avg_rms = (left_rms + right_rms) / 2 stereo_samples[:, 0] = stereo_samples[:, 0] * (avg_rms / left_rms) stereo_samples[:, 1] = stereo_samples[:, 1] * (avg_rms / right_rms) balanced_samples = stereo_samples.flatten().astype(np.int16) balanced_segment = AudioSegment( balanced_samples.tobytes(), frame_rate=sample_rate, sample_width=audio_segment.sample_width, channels=2 ) logger.debug("Stereo balancing completed") return balanced_segment logger.debug("Segment is not stereo, returning unchanged") return audio_segment def calculate_rms(segment): samples = np.array(segment.get_array_of_samples(), dtype=np.float32) rms = np.sqrt(np.mean(samples**2)) logger.debug(f"Calculated RMS: {rms}") return rms def rms_normalize(segment, target_rms_db=-23.0, peak_limit_db=-3.0, sample_rate=16000): logger.debug(f"Normalizing RMS for segment with target {target_rms_db} dBFS") target_rms = 10 ** (target_rms_db / 20) * 32767 current_rms = calculate_rms(segment) if current_rms > 0: gain_factor = target_rms / current_rms segment = segment.apply_gain(20 * np.log10(gain_factor)) segment = hard_limit(segment, limit_db=peak_limit_db, sample_rate=sample_rate) logger.debug("RMS normalization completed") return segment def hard_limit(audio_segment, limit_db=-3.0, sample_rate=16000): logger.debug(f"Applying hard limit at {limit_db} dBFS") limit = 10 ** (limit_db / 20.0) * 32767 samples = np.array(audio_segment.get_array_of_samples(), dtype=np.float32) samples = np.clip(samples, -limit, limit).astype(np.int16) limited_segment = AudioSegment( samples.tobytes(), frame_rate=sample_rate, sample_width=audio_segment.sample_width, channels=audio_segment.channels ) logger.debug("Hard limit applied") return limited_segment def apply_eq(segment, sample_rate=16000): logger.debug(f"Applying EQ with sample rate {sample_rate}") segment = segment.high_pass_filter(20) segment = segment.low_pass_filter(20000) logger.debug("EQ applied") return segment def apply_fade(segment, fade_in_duration=500, fade_out_duration=500): logger.debug(f"Applying fade: in={fade_in_duration}ms, out={fade_out_duration}ms") segment = segment.fade_in(fade_in_duration) segment = segment.fade_out(fade_out_duration) logger.debug("Fade applied") return segment # Genre prompt functions def set_red_hot_chili_peppers_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("strong rhythmic steps" if bpm > 120 else "groovy rhythmic flow") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else ", groovy basslines" guitar = f", {guitar_style} guitar riffs" if guitar_style != "none" else ", syncopated guitar riffs" prompt = f"Instrumental funk rock{bass}{guitar}{drum}{synth}, Red Hot Chili Peppers-inspired vibe with dynamic energy and funky breakdowns, {rhythm} at {bpm} BPM." logger.debug(f"Generated RHCP prompt: {prompt}") return prompt def set_nirvana_grunge_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("intense rhythmic steps" if bpm > 120 else "grungy rhythmic pulse") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else ", melodic basslines" guitar = f", {guitar_style} guitar riffs" if guitar_style != "none" else ", raw distorted guitar riffs" prompt = f"Instrumental grunge{bass}{guitar}{drum}{synth}, Nirvana-inspired angst-filled sound with quiet-loud dynamics, {rhythm} at {bpm} BPM." logger.debug(f"Generated Nirvana prompt: {prompt}") return prompt def set_pearl_jam_grunge_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("soulful rhythmic steps" if bpm > 120 else "driving rhythmic flow") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else ", deep bass" guitar = f", {guitar_style} guitar leads" if guitar_style != "none" else ", soulful guitar leads" prompt = f"Instrumental grunge{bass}{guitar}{drum}{synth}, Pearl Jam-inspired emotional intensity with soaring choruses, {rhythm} at {bpm} BPM." logger.debug(f"Generated Pearl Jam prompt: {prompt}") return prompt def set_soundgarden_grunge_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("heavy rhythmic steps" if bpm > 120 else "sludgy rhythmic groove") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else "" guitar = f", {guitar_style} guitar riffs" if guitar_style != "none" else ", heavy sludgy guitar riffs" prompt = f"Instrumental grunge{bass}{guitar}{drum}{synth}, Soundgarden-inspired dark, psychedelic edge, {rhythm} at {bpm} BPM." logger.debug(f"Generated Soundgarden prompt: {prompt}") return prompt def set_foo_fighters_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): styles = ["anthemic", "gritty", "melodic", "fast-paced", "driving"] tempos = ["upbeat", "mid-tempo", "high-energy"] moods = ["energetic", "introspective", "rebellious", "uplifting"] style = random.choice(styles) tempo = random.choice(tempos) mood = random.choice(moods) rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("powerful rhythmic steps" if bpm > 120 else "catchy rhythmic groove") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else "" guitar = f", {guitar_style} guitar riffs" if guitar_style != "none" else f", {style} guitar riffs" prompt = f"Instrumental alternative rock{bass}{guitar}{drum}{synth}, Foo Fighters-inspired {mood} vibe with powerful choruses, {rhythm} at {bpm} BPM." logger.debug(f"Generated Foo Fighters prompt: {prompt}") return prompt def set_smashing_pumpkins_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("dynamic rhythmic steps" if bpm > 120 else "dreamy rhythmic flow") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else "" guitar = f", {guitar_style} guitar textures" if guitar_style != "none" else ", dreamy guitar textures" prompt = f"Instrumental alternative rock{bass}{guitar}{drum}{synth}, Smashing Pumpkins-inspired blend of melancholy and aggression, {rhythm} at {bpm} BPM." logger.debug(f"Generated Smashing Pumpkins prompt: {prompt}") return prompt def set_radiohead_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("complex rhythmic steps" if bpm > 120 else "intricate rhythmic pulse") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else ", atmospheric synths" bass = f", {bass_style}" if bass_style != "none" else "" guitar = f", {guitar_style} guitar layers" if guitar_style != "none" else ", intricate guitar layers" prompt = f"Instrumental experimental rock{bass}{guitar}{drum}{synth}, Radiohead-inspired blend of introspective and innovative soundscapes, {rhythm} at {bpm} BPM." logger.debug(f"Generated Radiohead prompt: {prompt}") return prompt def set_classic_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("bluesy rhythmic steps" if bpm > 120 else "steady rhythmic groove") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else ", groovy bass" guitar = f", {guitar_style} electric guitars" if guitar_style != "none" else ", bluesy electric guitars" prompt = f"Instrumental classic rock{bass}{guitar}{drum}{synth}, Led Zeppelin-inspired raw energy with dynamic solos, {rhythm} at {bpm} BPM." logger.debug(f"Generated Classic Rock prompt: {prompt}") return prompt def set_alternative_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("quirky rhythmic steps" if bpm > 120 else "energetic rhythmic flow") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else ", melodic basslines" guitar = f", {guitar_style} guitar riffs" if guitar_style != "none" else ", distorted guitar riffs" prompt = f"Instrumental alternative rock{bass}{guitar}{drum}{synth}, Pixies-inspired quirky, energetic vibe, {rhythm} at {bpm} BPM." logger.debug(f"Generated Alternative Rock prompt: {prompt}") return prompt def set_post_punk_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("sharp rhythmic steps" if bpm > 120 else "moody rhythmic pulse") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else ", driving basslines" guitar = f", {guitar_style} guitars" if guitar_style != "none" else ", jangly guitars" prompt = f"Instrumental post-punk{bass}{guitar}{drum}{synth}, Joy Division-inspired moody, atmospheric sound with a steady, hypnotic beat, {rhythm} at {bpm} BPM." logger.debug(f"Generated Post-Punk prompt: {prompt}") return prompt def set_indie_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("catchy rhythmic steps" if bpm > 120 else "jangly rhythmic flow") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else "" guitar = f", {guitar_style} guitars" if guitar_style != "none" else ", jangly guitars" prompt = f"Instrumental indie rock{bass}{guitar}{drum}{synth}, Arctic Monkeys-inspired blend of catchy riffs, {rhythm} at {bpm} BPM." logger.debug(f"Generated Indie Rock prompt: {prompt}") return prompt def set_funk_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("aggressive rhythmic steps" if bpm > 120 else "funky rhythmic groove") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else ", slap bass" guitar = f", {guitar_style} guitar chords" if guitar_style != "none" else ", funky guitar chords" prompt = f"Instrumental funk rock{bass}{guitar}{drum}{synth}, Rage Against the Machine-inspired mix of groove and aggression, {rhythm} at {bpm} BPM." logger.debug(f"Generated Funk Rock prompt: {prompt}") return prompt def set_detroit_techno_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("pulsing rhythmic steps" if bpm > 120 else "deep rhythmic groove") drum = f", {drum_beat} drums" if drum_beat != "none" else ", crisp hi-hats and a steady four-on-the-floor kick drum" synth = f", {synthesizer} accents" if synthesizer != "none" else ", deep pulsing synths with a repetitive, hypnotic pattern" bass = f", {bass_style}" if bass_style != "none" else ", driving basslines with a consistent, groovy pulse" guitar = f", {guitar_style} guitars" if guitar_style != "none" else "" prompt = f"Instrumental Detroit techno{bass}{guitar}{drum}{synth}, Juan Atkins-inspired rhythmic groove with a steady, repetitive beat, {rhythm} at {bpm} BPM." logger.debug(f"Generated Detroit Techno prompt: {prompt}") return prompt def set_deep_house_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("soulful rhythmic steps" if bpm > 120 else "laid-back rhythmic flow") drum = f", {drum_beat} drums" if drum_beat != "none" else ", steady four-on-the-floor kick drum with soft hi-hats" synth = f", {synthesizer} accents" if synthesizer != "none" else ", warm analog synth chords with a repetitive, hypnotic progression" bass = f", {bass_style}" if bass_style != "none" else ", deep basslines with a consistent, groovy pulse" guitar = f", {guitar_style} guitars" if guitar_style != "none" else "" prompt = f"Instrumental deep house{bass}{guitar}{drum}{synth}, Larry Heard-inspired laid-back groove with a steady, repetitive beat, {rhythm} at {bpm} BPM." logger.debug(f"Generated Deep House prompt: {prompt}") return prompt # Preset configurations for genres (optimized for medium model) PRESETS = { "default": {"cfg_scale": 2.0, "top_k": 150, "top_p": 0.9, "temperature": 0.8}, "rock": {"cfg_scale": 2.5, "top_k": 140, "top_p": 0.9, "temperature": 0.9}, "techno": {"cfg_scale": 1.8, "top_k": 160, "top_p": 0.85, "temperature": 0.7}, "grunge": {"cfg_scale": 2.0, "top_k": 150, "top_p": 0.9, "temperature": 0.85}, "indie": {"cfg_scale": 2.2, "top_k": 145, "top_p": 0.9, "temperature": 0.8} } # Function to get the latest log file def get_latest_log(): log_files = sorted(Path(log_dir).glob("musicgen_log_*.log"), key=os.path.getmtime, reverse=True) if not log_files: logger.warning("No log files found") return "No log files found." try: with open(log_files[0], "r") as f: content = f.read() logger.info(f"Retrieved latest log file: {log_files[0]}") return content except Exception as e: logger.error(f"Failed to read log file {log_files[0]}: {e}") return f"Error reading log file: {e}" # Optimized generation function def generate_music(instrumental_prompt: str, cfg_scale: float, top_k: int, top_p: float, temperature: float, total_duration: int, bpm: int, drum_beat: str, synthesizer: str, rhythmic_steps: str, bass_style: str, guitar_style: str, target_volume: float, preset: str, vram_status: str): global musicgen_model if not instrumental_prompt.strip(): logger.warning("Empty instrumental prompt provided") return None, "⚠️ Please enter a valid instrumental prompt!", vram_status try: logger.info("Starting music generation...") start_time = time.time() max_duration = 30 # Strict 30s max per chunk total_duration = min(max(total_duration, 30), 120) # Clamp between 30s and 120s processing_sample_rate = 16000 # Lower for processing output_sample_rate = 32000 # MusicGen's native rate audio_segments = [] overlap_duration = 0.3 # 300ms for continuation and crossfade remaining_duration = total_duration if preset != "default": preset_params = PRESETS.get(preset, PRESETS["default"]) cfg_scale = preset_params["cfg_scale"] top_k = preset_params["top_k"] top_p = preset_params["top_p"] temperature = preset_params["temperature"] logger.info(f"Applied preset {preset}: cfg_scale={cfg_scale}, top_k={top_k}, top_p={top_p}, temperature={temperature}") if not check_disk_space(): logger.error("Insufficient disk space") return None, "⚠️ Insufficient disk space. Free up at least 1 GB.", vram_status logger.info(f"Generating audio for {total_duration}s with seed=42") seed = 42 base_prompt = instrumental_prompt clean_memory() vram_status = f"Initial VRAM: {torch.cuda.memory_allocated() / 1024**2:.2f} MB" while remaining_duration > 0: current_duration = min(max_duration, remaining_duration) generation_duration = current_duration # No overlap in generation chunk_num = len(audio_segments) + 1 logger.info(f"Generating chunk {chunk_num} ({current_duration}s, VRAM: {torch.cuda.memory_allocated() / 1024**2:.2f} MB)") musicgen_model.set_generation_params( duration=generation_duration, use_sampling=True, top_k=top_k, top_p=top_p, temperature=temperature, cfg_coef=cfg_scale ) try: with torch.no_grad(): with autocast(dtype=torch.float16): torch.manual_seed(seed) np.random.seed(seed) torch.cuda.manual_seed_all(seed) clean_memory() # Pre-generation cleanup if not audio_segments: logger.debug("Generating first chunk") audio_segment = musicgen_model.generate([base_prompt], progress=True)[0].cpu() else: logger.debug("Generating continuation chunk") prev_segment = audio_segments[-1] prev_segment = balance_stereo(prev_segment, noise_threshold=-60, sample_rate=processing_sample_rate) temp_wav_path = f"temp_prev_{int(time.time()*1000)}.wav" logger.debug(f"Exporting previous segment to {temp_wav_path}") prev_segment.export(temp_wav_path, format="wav") # Use memory-mapped file I/O with open(temp_wav_path, "rb") as f: mmapped_file = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ) prev_audio, prev_sr = torchaudio.load(temp_wav_path) mmapped_file.close() if prev_sr != processing_sample_rate: logger.debug(f"Resampling from {prev_sr} to {processing_sample_rate}") prev_audio = torchaudio.transforms.Resample(prev_sr, processing_sample_rate)(prev_audio) prev_audio = prev_audio.to(device) os.remove(temp_wav_path) logger.debug(f"Deleted temporary file {temp_wav_path}") audio_segment = musicgen_model.generate_continuation( prompt=prev_audio[:, -int(processing_sample_rate * overlap_duration):], prompt_sample_rate=processing_sample_rate, descriptions=[base_prompt], progress=True )[0].cpu() del prev_audio clean_memory() except Exception as e: logger.error(f"Error in chunk {chunk_num} generation: {e}") logger.error(traceback.format_exc()) raise e logger.debug(f"Generated audio segment shape: {audio_segment.shape}") audio_segment = audio_segment.to(dtype=torch.float32) if audio_segment.dim() == 1: logger.debug("Converting mono to stereo") audio_segment = torch.stack([audio_segment, audio_segment], dim=0) elif audio_segment.dim() == 2 and audio_segment.shape[0] != 2: logger.debug("Adjusting to stereo") audio_segment = torch.cat([audio_segment, audio_segment], dim=0) if audio_segment.shape[0] != 2: logger.error(f"Expected stereo audio with shape (2, samples), got shape {audio_segment.shape}") raise ValueError(f"Expected stereo audio with shape (2, samples), got shape {audio_segment.shape}") temp_wav_path = f"temp_audio_{int(time.time()*1000)}.wav" logger.debug(f"Saving audio segment to {temp_wav_path}") torchaudio.save(temp_wav_path, audio_segment, output_sample_rate, bits_per_sample=16) segment = AudioSegment.from_wav(temp_wav_path) os.remove(temp_wav_path) logger.debug(f"Deleted temporary file {temp_wav_path}") segment = segment - 15 if segment.frame_rate != processing_sample_rate: logger.debug(f"Setting segment sample rate to {processing_sample_rate}") segment = segment.set_frame_rate(processing_sample_rate) segment = balance_stereo(segment, noise_threshold=-60, sample_rate=processing_sample_rate) segment = rms_normalize(segment, target_rms_db=target_volume, peak_limit_db=-3.0, sample_rate=processing_sample_rate) segment = apply_eq(segment, sample_rate=processing_sample_rate) audio_segments.append(segment) del audio_segment clean_memory() vram_status = f"VRAM after chunk {chunk_num}: {torch.cuda.memory_allocated() / 1024**2:.2f} MB" time.sleep(0.1) remaining_duration -= current_duration logger.info("Combining audio chunks...") final_segment = audio_segments[0][:min(max_duration, total_duration) * 1000] overlap_ms = int(overlap_duration * 1000) for i in range(1, len(audio_segments)): current_segment = audio_segments[i] current_segment = current_segment[:min(max_duration, total_duration - (i * max_duration)) * 1000] if overlap_ms > 0 and len(current_segment) > overlap_ms: logger.debug(f"Applying crossfade between chunks {i} and {i+1}") prev_overlap = final_segment[-overlap_ms:] curr_overlap = current_segment[:overlap_ms] num_samples = len(np.array(prev_overlap.get_array_of_samples(), dtype=np.float32)) // 2 blended_samples = np.zeros((num_samples, 2), dtype=np.float32) prev_samples = np.array(prev_overlap.get_array_of_samples(), dtype=np.float32).reshape(-1, 2) curr_samples = np.array(curr_overlap.get_array_of_samples(), dtype=np.float32).reshape(-1, 2) hann_window = 0.5 * (1 - np.cos(2 * np.pi * np.arange(num_samples) / num_samples)) fade_out = hann_window[::-1] fade_in = hann_window blended_samples = (prev_samples * fade_out[:, None] + curr_samples * fade_in[:, None]) blended_segment = AudioSegment( blended_samples.astype(np.int16).tobytes(), frame_rate=processing_sample_rate, sample_width=2, channels=2 ) blended_segment = rms_normalize(blended_segment, target_rms_db=target_volume, peak_limit_db=-3.0, sample_rate=processing_sample_rate) final_segment = final_segment[:-overlap_ms] + blended_segment + current_segment[overlap_ms:] else: logger.debug(f"Concatenating chunk {i+1} without crossfade") final_segment += current_segment final_segment = final_segment[:total_duration * 1000] logger.info("Post-processing final track...") final_segment = rms_normalize(final_segment, target_rms_db=target_volume, peak_limit_db=-3.0, sample_rate=processing_sample_rate) final_segment = apply_eq(final_segment, sample_rate=processing_sample_rate) final_segment = apply_fade(final_segment) final_segment = balance_stereo(final_segment, noise_threshold=-60, sample_rate=processing_sample_rate) final_segment = final_segment - 10 final_segment = final_segment.set_frame_rate(output_sample_rate) # Upsample to output rate mp3_path = f"output_adjusted_volume_{int(time.time())}.mp3" logger.info("⚠️ WARNING: Audio is set to safe levels (~ -23 dBFS RMS, -3 dBFS peak). Start playback at LOW volume (10-20%) and adjust gradually.") logger.info("VERIFY: Open the file in Audacity to check for static. RMS should be ~ -23 dBFS, peaks ≤ -3 dBFS. Report any static or issues.") try: logger.debug(f"Exporting final audio to {mp3_path}") final_segment.export( mp3_path, format="mp3", bitrate="96k", tags={"title": "GhostAI Instrumental", "artist": "GhostAI"} ) logger.info(f"Final audio saved to {mp3_path}") except Exception as e: logger.error(f"Error exporting MP3: {e}") fallback_path = f"fallback_output_{int(time.time())}.mp3" try: final_segment.export(fallback_path, format="mp3", bitrate="96k") logger.info(f"Final audio saved to fallback: {fallback_path}") mp3_path = fallback_path except Exception as fallback_e: logger.error(f"Failed to save fallback MP3: {fallback_e}") raise e vram_status = f"Final VRAM: {torch.cuda.memory_allocated() / 1024**2:.2f} MB" logger.info(f"Generation completed in {time.time() - start_time:.2f} seconds") return mp3_path, "✅ Done! Generated static-free track with adjusted volume levels.", vram_status except Exception as e: logger.error(f"Generation failed: {e}") logger.error(traceback.format_exc()) return None, f"❌ Generation failed: {e}", vram_status finally: clean_memory() # Clear inputs function def clear_inputs(): logger.info("Clearing input fields") return "", 2.0, 150, 0.9, 0.8, 30, 120, "none", "none", "none", "none", "none", -23.0, "default", "" # Custom CSS css = """ body { background: linear-gradient(135deg, #0A0A0A 0%, #1C2526 100%); color: #E0E0E0; font-family: 'Orbitron', sans-serif; } .header-container { text-align: center; padding: 10px 20px; background: rgba(0, 0, 0, 0.9); border-bottom: 1px solid #00FF9F; } #ghost-logo { font-size: 40px; animation: glitch-ghost 1.5s infinite; } h1 { color: #A100FF; font-size: 24px; animation: glitch-text 2s infinite; } p { color: #E0E0E0; font-size: 12px; } .input-container, .settings-container, .output-container, .logs-container { max-width: 1200px; margin: 20px auto; padding: 20px; background: rgba(28, 37, 38, 0.8); border-radius: 10px; } .textbox { background: #1A1A1A; border: 1px solid #A100FF; color: #E0E0E0; } .genre-buttons { display: flex; justify-content: center; flex-wrap: wrap; gap: 15px; } .genre-btn, button { background: linear-gradient(45deg, #A100FF, #00FF9F); border: none; color: #0A0A0A; padding: 10px 20px; border-radius: 5px; } .gradio-container { padding: 20px; } .group-container { margin-bottom: 20px; padding: 15px; border: 1px solid #00FF9F; border-radius: 8px; } @keyframes glitch-ghost { 0% { transform: translate(0, 0); opacity: 1; } 20% { transform: translate(-5px, 2px); opacity: 0.8; } 100% { transform: translate(0, 0); opacity: 1; } } @keyframes glitch-text { 0% { transform: translate(0, 0); } 20% { transform: translate(-2px, 1px); } 100% { transform: translate(0, 0); } } @font-face { font-family: 'Orbitron'; src: url('https://fonts.gstatic.com/s/orbitron/v29/yMJRMIlzdpvBhQQL_Qq7dy0.woff2') format('woff2'); } """ # Build Gradio interface logger.info("Building Gradio interface...") with gr.Blocks(css=css) as demo: gr.Markdown("""
Summon the Sound of the Unknown