import os import torch import torchaudio import psutil import time import sys import numpy as np import gc import gradio as gr from pydub import AudioSegment from audiocraft.models import MusicGen from torch.cuda.amp import autocast import warnings import random from transformers import AutoProcessor, BarkModel from accelerate import Accelerator from transformers import BitsAndBytesConfig import bitsandbytes as bnb # Suppress warnings for cleaner output warnings.filterwarnings("ignore") # Set PYTORCH_CUDA_ALLOC_CONF to manage memory fragmentation os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:64" # Check critical dependencies if np.__version__ != "1.23.5": print(f"WARNING: NumPy version {np.__version__} is being used. Tested with numpy==1.23.5.") if not torch.__version__.startswith(("2.1.0", "2.3.1")): print(f"WARNING: PyTorch version {torch.__version__} may not be compatible. Expected torch==2.1.0 or 2.3.1.") # 1) DEVICE SETUP device = "cuda" if torch.cuda.is_available() else "cpu" if device != "cuda": print("ERROR: CUDA is required for GPU rendering. CPU rendering is disabled.") sys.exit(1) print(f"CUDA is available. Using GPU: {torch.cuda.get_device_name(0)}") # Initialize accelerator accelerator = Accelerator(mixed_precision="fp16") # Simplified memory cleanup to avoid freezes def memory_cleanup(): torch.cuda.empty_cache() gc.collect() print("Performed memory cleanup.") memory_cleanup() # 2) LOAD MODELS try: print("Loading MusicGen medium model into GPU VRAM...") local_model_path = "./models/musicgen-medium" if not os.path.exists(local_model_path): print(f"ERROR: Local model path {local_model_path} does not exist.") print("Please download the MusicGen medium model weights and place them in the correct directory.") sys.exit(1) musicgen_model = MusicGen.get_pretrained(local_model_path, device="cuda") # Load directly to GPU musicgen_model.set_generation_params( duration=5, # Lower default chunk duration two_step_cfg=False # Disable two-step CFG for stability ) except Exception as e: print(f"ERROR: Failed to load MusicGen model: {e}") print("Ensure model weights are correctly placed and dependencies are installed.") sys.exit(1) try: print("Loading Bark small model into GPU VRAM with 4-bit quantization...") # Configure 4-bit quantization quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True ) bark_processor = AutoProcessor.from_pretrained("suno/bark-small") bark_model = BarkModel.from_pretrained( "suno/bark-small", quantization_config=quantization_config, device_map="cuda" ) # Load directly to GPU with quantization except Exception as e: print(f"ERROR: Failed to load Bark model: {e}") print("Ensure Bark model weights and bitsandbytes are installed.") sys.exit(1) # 3) RESOURCE MONITORING FUNCTION def print_resource_usage(stage: str): print(f"--- {stage} ---") print(f"GPU Memory Allocated: {torch.cuda.memory_allocated() / (1024**3):.2f} GB") print(f"GPU Memory Reserved: {torch.cuda.memory_reserved() / (1024**3):.2f} GB") print(f"CPU Memory Used: {psutil.virtual_memory().percent}%") print(f"System RAM Available: {psutil.virtual_memory().available / (1024**3):.2f} GB") print("---------------") # Check available GPU memory def check_vram_availability(required_gb=3.0): total_vram = torch.cuda.get_device_properties(0).total_memory / (1024**3) allocated_vram = torch.cuda.memory_allocated() / (1024**3) available_vram = total_vram - allocated_vram if available_vram < required_gb: print(f"WARNING: Low VRAM available ({available_vram:.2f} GB < {required_gb:.2f} GB required).") print("Reduce total_duration, chunk_duration, or skip vocals.") print(f"Total VRAM: {total_vram:.2f} GB, Available: {available_vram:.2f} GB") return available_vram >= required_gb # 4) GENRE PROMPT FUNCTIONS def set_red_hot_chili_peppers_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("strong rhythmic steps" if bpm > 120 else "groovy rhythmic flow") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else ", groovy basslines" guitar = f", {guitar_style} guitar riffs" if guitar_style != "none" else ", syncopated guitar riffs" return f"Instrumental funk rock{bass}{guitar}{drum}{synth}, Red Hot Chili Peppers-inspired vibe with dynamic energy and funky breakdowns, {rhythm} at {bpm} BPM." def set_nirvana_grunge_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("intense rhythmic steps" if bpm > 120 else "grungy rhythmic pulse") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else ", melodic basslines" guitar = f", {guitar_style} guitar riffs" if guitar_style != "none" else ", raw distorted guitar riffs" return f"Instrumental grunge{bass}{guitar}{drum}{synth}, Nirvana-inspired angst-filled sound with quiet-loud dynamics, {rhythm} at {bpm} BPM." def set_pearl_jam_grunge_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("soulful rhythmic steps" if bpm > 120 else "driving rhythmic flow") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else ", deep bass" guitar = f", {guitar_style} guitar leads" if guitar_style != "none" else ", soulful guitar leads" return f"Instrumental grunge{bass}{guitar}{drum}{synth}, Pearl Jam-inspired emotional intensity with soaring choruses, {rhythm} at {bpm} BPM." def set_soundgarden_grunge_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("heavy rhythmic steps" if bpm > 120 else "sludgy rhythmic groove") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else "" guitar = f", {guitar_style} guitar riffs" if guitar_style != "none" else ", heavy sludgy guitar riffs" return f"Instrumental grunge{bass}{guitar}{drum}{synth}, Soundgarden-inspired dark, psychedelic edge, {rhythm} at {bpm} BPM." def set_foo_fighters_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): styles = ["anthemic", "gritty", "melodic", "fast-paced", "driving"] tempos = ["upbeat", "mid-tempo", "high-energy"] moods = ["energetic", "introspective", "rebellious", "uplifting"] style = random.choice(styles) tempo = random.choice(tempos) mood = random.choice(moods) rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("powerful rhythmic steps" if bpm > 120 else "catchy rhythmic groove") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else "" guitar = f", {guitar_style} guitar riffs" if guitar_style != "none" else f", {style} guitar riffs" return f"Instrumental alternative rock{bass}{guitar}{drum}{synth}, Foo Fighters-inspired {mood} vibe with powerful choruses, {rhythm} at {bpm} BPM." def set_smashing_pumpkins_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("dynamic rhythmic steps" if bpm > 120 else "dreamy rhythmic flow") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else "" guitar = f", {guitar_style} guitar textures" if guitar_style != "none" else ", dreamy guitar textures" return f"Instrumental alternative rock{bass}{guitar}{drum}{synth}, Smashing Pumpkins-inspired blend of melancholy and aggression, {rhythm} at {bpm} BPM." def set_radiohead_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("complex rhythmic steps" if bpm > 120 else "intricate rhythmic pulse") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else ", atmospheric synths" bass = f", {bass_style}" if bass_style != "none" else "" guitar = f", {guitar_style} guitar layers" if guitar_style != "none" else ", intricate guitar layers" return f"Instrumental experimental rock{bass}{guitar}{drum}{synth}, Radiohead-inspired blend of introspective and innovative soundscapes, {rhythm} at {bpm} BPM." def set_classic_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("bluesy rhythmic steps" if bpm > 120 else "steady rhythmic groove") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else ", groovy bass" guitar = f", {guitar_style} electric guitars" if guitar_style != "none" else ", bluesy electric guitars" return f"Instrumental classic rock{bass}{guitar}{drum}{synth}, Led Zeppelin-inspired raw energy with dynamic solos, {rhythm} at {bpm} BPM." def set_alternative_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("quirky rhythmic steps" if bpm > 120 else "energetic rhythmic flow") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else ", melodic basslines" guitar = f", {guitar_style} guitar riffs" if guitar_style != "none" else ", distorted guitar riffs" return f"Instrumental alternative rock{bass}{guitar}{drum}{synth}, Pixies-inspired quirky, energetic vibe, {rhythm} at {bpm} BPM." def set_post_punk_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("sharp rhythmic steps" if bpm > 120 else "moody rhythmic pulse") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else ", driving basslines" guitar = f", {guitar_style} guitars" if guitar_style != "none" else ", jangly guitars" return f"Instrumental post-punk{bass}{guitar}{drum}{synth}, Joy Division-inspired moody, atmospheric sound, {rhythm} at {bpm} BPM." def set_indie_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("catchy rhythmic steps" if bpm > 120 else "jangly rhythmic flow") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else "" guitar = f", {guitar_style} guitars" if guitar_style != "none" else ", jangly guitars" return f"Instrumental indie rock{bass}{guitar}{drum}{synth}, Arctic Monkeys-inspired blend of catchy riffs, {rhythm} at {bpm} BPM." def set_funk_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("aggressive rhythmic steps" if bpm > 120 else "funky rhythmic groove") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else "" bass = f", {bass_style}" if bass_style != "none" else ", slap bass" guitar = f", {guitar_style} guitar chords" if guitar_style != "none" else ", funky guitar chords" return f"Instrumental funk rock{bass}{guitar}{drum}{synth}, Rage Against the Machine-inspired mix of groove and aggression, {rhythm} at {bpm} BPM." def set_detroit_techno_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("pulsing rhythmic steps" if bpm > 120 else "deep rhythmic groove") drum = f", {drum_beat} drums" if drum_beat != "none" else ", crisp hi-hats" synth = f", {synthesizer} accents" if synthesizer != "none" else ", deep pulsing synths" bass = f", {bass_style}" if bass_style != "none" else ", driving basslines" guitar = f", {guitar_style} guitars" if guitar_style != "none" else "" return f"Instrumental Detroit techno{bass}{guitar}{drum}{synth}, Juan Atkins-inspired rhythmic groove, {rhythm} at {bpm} BPM." def set_deep_house_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style): rhythm = f" with {rhythmic_steps}" if rhythmic_steps != "none" else ("soulful rhythmic steps" if bpm > 120 else "laid-back rhythmic flow") drum = f", {drum_beat} drums" if drum_beat != "none" else "" synth = f", {synthesizer} accents" if synthesizer != "none" else ", warm analog synth chords" bass = f", {bass_style}" if bass_style != "none" else ", deep basslines" guitar = f", {guitar_style} guitars" if guitar_style != "none" else "" return f"Instrumental deep house{bass}{guitar}{drum}{synth}, Larry Heard-inspired laid-back groove, {rhythm} at {bpm} BPM." # 5) VOCAL PROMPT FUNCTIONS def set_upbeat_funk_rock_vocal_prompt(): return """[Verse 1, upbeat funk rock, male voice] Cruisin' down the highway, feel the summer breeze, Funky rhythm in my bones, movin' with ease, City lights are callin', gonna dance all night, Livin' for the groove, everything feels right! [Chorus, energetic] Oh-oh-oh, let the funk take control, Shake your body, let it free your soul, Oh-oh-oh, we're burnin' up the stage, Funk it up, we're livin' for the rage!""" def set_grunge_ballad_vocal_prompt(): return """[Verse 1 – Soft, Grunge Ballad, male voice] Shadows fall across my heart, I'm lost in the rain, Whispers of a broken dream, carry all my pain. Underneath the weight of time, I’m fading away, Searching for a spark to light another day. [Chorus – Intense, male voice] Scream it out, let the silence break, Feel the fire, for my soul’s sake. Hold me now, through the endless night, In the dark, I’m reaching for the light! [Verse 2 – Building Intensity, male voice] Cracks appear in my reflection, truth I can't deny, Memories like ghosts surround, no matter how I try. Each step forward feels like I'm walking through the past, Chasing echoes of a peace that never seems to last. [Chorus – Intensified, male voice] Scream it out, let the silence break, Feel the fire, for my soul’s sake. Hold me now, through the endless night, In the dark, I’m reaching for the light! [Bridge – Emotional Climax, male voice] I’ve been down this road before, Locked behind a closing door. But even in the blackest shade, A flicker of hope refuses to fade. [Verse 3 – Reflective, male voice] Rain-soaked streets and neon signs, Mark the path of these troubled times. Yet amidst the storm and strife, I find fragments of a former life. [Chorus – Final, Powerful, male voice] Scream it out, let the silence break, Feel the fire, for my soul’s sake. Hold me now, through the endless night, In the dark, I’m reaching for the light! [Outro – Soft, Resolute, male voice] Though shadows linger and nights are long, Within my soul, I find a song. A melody of hope, burning bright, Guiding me onward, into the light.""" def set_indie_pop_vocal_prompt(): return """[Verse 1, indie pop, female voice] Walking through the neon streets, where the city sings, Chasing every fleeting star, on these fragile wings, Heartbeat like a drum machine, pulsing through the air, Every moment’s electric, love is everywhere. [Chorus, upbeat] Oh, we’re dancing in the glow, under moonlit skies, Spinning through the colors, with sparks in our eyes, Oh, the night is ours to keep, let the music play, Living for this feeling, we’ll never fade away!""" # 6) AUDIO PROCESSING FUNCTIONS def apply_eq(segment): segment = segment.low_pass_filter(8000) segment = segment.high_pass_filter(80) return segment def apply_fade(segment, fade_in_duration=1000, fade_out_duration=1000): segment = segment.fade_in(fade_in_duration) segment = segment.fade_out(fade_out_duration) return segment def generate_vocals(vocal_prompt: str, total_duration: int, speaker_preset: str): global bark_model, bark_processor if not vocal_prompt.strip(): return None, "⚠️ Please enter a valid vocal prompt!" try: print("Generating vocals with Bark...") # Apply speaker preset if specified if speaker_preset != "default": vocal_prompt = f"[{speaker_preset}] {vocal_prompt}" # Check token length tokens = bark_processor.tokenize(vocal_prompt) token_ids = bark_processor.convert_tokens_to_ids(tokens) if len(token_ids) > 512: print("WARNING: Vocal prompt exceeds 512 tokens; truncating to avoid errors.") vocal_prompt = bark_processor.decode(token_ids[:512]) # Process vocal prompt with attention mask, relying on default padding inputs = bark_processor( vocal_prompt, return_tensors="pt", return_attention_mask=True ).to("cuda") # Set pad_token_id explicitly, avoiding eos_token_id pad_token_id = 0 # Use 0 as a safe padding token # Generate vocals with mixed precision with torch.no_grad(), autocast(): vocal_array = bark_model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], do_sample=True, pad_token_id=pad_token_id ) # Convert to numpy and create AudioSegment vocal_array = vocal_array.cpu().numpy().squeeze() sample_rate = 24000 # Default sample rate for suno/bark-small temp_vocal_path = "temp_vocal.wav" # Convert tensor to float32 for torchaudio.save compatibility vocal_tensor = torch.tensor(vocal_array, dtype=torch.float32).unsqueeze(0) torchaudio.save(temp_vocal_path, vocal_tensor, sample_rate) vocal_segment = AudioSegment.from_wav(temp_vocal_path) os.remove(temp_vocal_path) # Trim or pad to match total_duration vocal_segment = vocal_segment[:total_duration * 1000] if len(vocal_segment) < total_duration * 1000: vocal_segment = vocal_segment + AudioSegment.silent(duration=(total_duration * 1000 - len(vocal_segment))) memory_cleanup() return vocal_segment, "✅ Vocals generated successfully." except Exception as e: return None, f"❌ Vocal generation failed: {e}" # 7) GENERATION & I/O FUNCTIONS def generate_music(instrumental_prompt: str, vocal_prompt: str, cfg_scale: float, top_k: int, top_p: float, temperature: float, total_duration: int, chunk_duration: int, crossfade_duration: int, bpm: int, drum_beat: str, synthesizer: str, rhythmic_steps: str, bass_style: str, guitar_style: str, speaker_preset: str): global musicgen_model if not instrumental_prompt.strip(): return None, "⚠️ Please enter a valid instrumental prompt!" try: start_time = time.time() total_duration = total_duration # Validated by radio button (30, 60, 90, 120) chunk_duration = min(max(chunk_duration, 5), 10) # Lower max to 10s num_chunks = max(1, total_duration // chunk_duration) chunk_duration = total_duration / num_chunks overlap_duration = min(1.0, crossfade_duration / 1000.0) generation_duration = chunk_duration + overlap_duration sample_rate = musicgen_model.sample_rate audio_segments = [] if not check_vram_availability(required_gb=3.0): return None, "⚠️ Insufficient VRAM for generation. Try reducing total_duration or chunk_duration further." print("Generating instrumental audio...") seed = 42 torch.manual_seed(seed) np.random.seed(seed) for i in range(num_chunks): chunk_prompt = instrumental_prompt print(f"Generating chunk {i+1}/{num_chunks} on GPU (prompt: {chunk_prompt})...") musicgen_model.set_generation_params( duration=generation_duration, use_sampling=True, top_k=top_k, top_p=top_p, temperature=temperature, cfg_coef=cfg_scale ) print_resource_usage(f"Before Chunk {i+1} Generation") with torch.no_grad(): with autocast(): audio_chunk = musicgen_model.generate([chunk_prompt], progress=True)[0] audio_chunk = audio_chunk.cpu().to(dtype=torch.float32) if audio_chunk.dim() == 1: audio_chunk = torch.stack([audio_chunk, audio_chunk], dim=0) elif audio_chunk.dim() == 2 and audio_chunk.shape[0] == 1: audio_chunk = torch.cat([audio_chunk, audio_chunk], dim=0) elif audio_chunk.dim() == 2 and audio_chunk.shape[0] != 2: audio_chunk = audio_chunk[:1, :] audio_chunk = torch.cat([audio_chunk, audio_chunk], dim=0) elif audio_chunk.dim() > 2: audio_chunk = audio_chunk.view(2, -1) if audio_chunk.shape[0] != 2: raise ValueError(f"Expected stereo audio with shape (2, samples), got shape {audio_chunk.shape}") temp_wav_path = f"temp_chunk_{i}.wav" torchaudio.save(temp_wav_path, audio_chunk, sample_rate, bits_per_sample=24) segment = AudioSegment.from_wav(temp_wav_path) os.remove(temp_wav_path) audio_segments.append(segment) memory_cleanup() print_resource_usage(f"After Chunk {i+1} Generation") print("Combining instrumental chunks...") final_segment = audio_segments[0] for i in range(1, len(audio_segments)): next_segment = audio_segments[i] next_segment = next_segment + 1 final_segment = final_segment.append(next_segment, crossfade=crossfade_duration) final_segment = final_segment[:total_duration * 1000] # Generate vocals if provided if vocal_prompt.strip(): vocal_segment, vocal_status = generate_vocals(vocal_prompt, total_duration, speaker_preset) if vocal_segment is None: return None, vocal_status print("Mixing vocals with instrumental...") final_segment = final_segment.overlay(vocal_segment, gain_during_overlay=-6) # Adjust vocal volume print("Post-processing final track...") final_segment = apply_eq(final_segment) final_segment = final_segment.normalize(headroom=-9.0) final_segment = apply_fade(final_segment) mp3_path = "output_cleaned.mp3" final_segment.export( mp3_path, format="mp3", bitrate="128k", tags={"title": "GhostAI Song", "artist": "GhostAI"} ) print(f"Saved final audio to {mp3_path}") print_resource_usage("After Final Generation") print(f"Total Generation Time: {time.time() - start_time:.2f} seconds") return mp3_path, "✅ Done! Generated song with vocals." if vocal_prompt.strip() else "✅ Done! Generated instrumental audio." except Exception as e: return None, f"❌ Generation failed: {e}" finally: memory_cleanup() # Function to clear inputs def clear_inputs(): return "", "", 3.0, 250, 0.9, 1.0, 30, 5, 1000, 120, "none", "none", "none", "none", "none", "default" # 8) CUSTOM CSS css = """ body { background: linear-gradient(135deg, #0A0A0A 0%, #1C2526 100%); color: #E0E0E0; font-family: 'Orbitron', sans-serif; } .header-container { text-align: center; padding: 10px 20px; background: rgba(0, 0, 0, 0.9); border-bottom: 1px solid #00FF9F; } #ghost-logo { font-size: 40px; animation: glitch-ghost 1.5s infinite; } h1 { color: #A100FF; font-size: 24px; animation: glitch-text 2s infinite; } p { color: #E0E0E0; font-size: 12px; } .input-container, .settings-container, .output-container { max-width: 1200px; margin: 20px auto; padding: 20px; background: rgba(28, 37, 38, 0.8); border-radius: 10px; } .textbox { background: #1A1A1A; border: 1px solid #A100FF; color: #E0E0E0; } .genre-buttons, .vocal-buttons { display: flex; justify-content: center; flex-wrap: wrap; gap: 15px; } .genre-btn, .vocal-btn, button { background: linear-gradient(45deg, #A100FF, #00FF9F); border: none; color: #0A0A0A; padding: 10px 20px; border-radius: 5px; } .gradio-container { padding: 20px; } .group-container { margin-bottom: 20px; padding: 15px; border: 1px solid #00FF9F; border-radius: 8px; } @keyframes glitch-ghost { 0% { transform: translate(0, 0); opacity: 1; } 20% { transform: translate(-5px, 2px); opacity: 0.8; } 100% { transform: translate(0, 0); opacity: 1; } } @keyframes glitch-text { 0% { transform: translate(0, 0); } 20% { transform: translate(-2px, 1px); } 100% { transform: translate(0, 0); } } @font-face { font-family: 'Orbitron'; src: url('https://fonts.gstatic.com/s/orbitron/v29/yMJRMIlzdpvBhQQL_Qq7dy0.woff2') format('woff2'); } """ # 9) BUILD WITH BLOCKS with gr.Blocks(css=css) as demo: gr.Markdown("""
Summon the Sound of the Unknown