import os import torch import torchaudio import psutil import time import sys import numpy as np import gc import gradio as gr from pydub import AudioSegment from audiocraft.models import MusicGen from torch.cuda.amp import autocast # Set PYTORCH_CUDA_ALLOC_CONF to manage memory fragmentation os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:32" # Check critical dependencies if np.__version__ != "1.23.5": print(f"WARNING: NumPy version {np.__version__} is being used. This script was tested with numpy==1.23.5, but proceeding anyway.") if not torch.__version__.startswith(("2.1.0", "2.3.1")): print(f"WARNING: PyTorch version {torch.__version__} may not be compatible. Expected torch==2.1.0 or 2.3.1.") # 1) DEVICE SETUP device = "cuda" if torch.cuda.is_available() else "cpu" if device != "cuda": print("ERROR: CUDA is required for GPU rendering. CPU rendering is disabled to avoid slow performance.") sys.exit(1) print(f"CUDA is available. Using GPU: {torch.cuda.get_device_name(0)}") # 2) LOAD MUSICGEN INTO VRAM try: print("Loading MusicGen model into VRAM...") local_model_path = "/home/ubuntu/ghostai_music_generator/models/musicgen-medium" if not os.path.exists(local_model_path): print(f"ERROR: Local model path {local_model_path} does not exist. Please ensure the model weights are downloaded.") sys.exit(1) musicgen_model = MusicGen.get_pretrained(local_model_path, device=device) except Exception as e: print(f"ERROR: Failed to load MusicGen model: {e}") print("Please ensure the model weights are in the correct path and dependencies are installed.") sys.exit(1) # 3) RESOURCE MONITORING FUNCTION def print_resource_usage(stage: str): print(f"--- {stage} ---") print(f"GPU Memory Allocated: {torch.cuda.memory_allocated() / (1024**3):.2f} GB") print(f"GPU Memory Reserved: {torch.cuda.memory_reserved() / (1024**3):.2f} GB") print("---------------") # 4) GENRE PROMPT FUNCTIONS (Redesigned for better track generation) def set_classic_rock_prompt(): return "Classic rock with bluesy electric guitars, steady drums, groovy bass, Hammond organ fills, and a Led Zeppelin-inspired raw energy, maintaining a cohesive structure with dynamic solos and powerful choruses." def set_alternative_rock_prompt(): return "Alternative rock with distorted guitar riffs, punchy drums, melodic basslines, atmospheric synths, and a Nirvana-inspired grunge vibe, featuring introspective verses and explosive choruses." def set_detroit_techno_prompt(): return "Detroit techno with deep pulsing synths, driving basslines, crisp hi-hats, atmospheric pads, and a rhythmic groove inspired by Juan Atkins, maintaining a hypnotic and energetic flow." def set_deep_house_prompt(): return "Deep house with warm analog synth chords, soulful vocal chops, deep basslines, crisp hi-hats, and a laid-back groove inspired by Larry Heard, creating a consistent hypnotic vibe with smooth transitions." def set_smooth_jazz_prompt(): return "Smooth jazz with warm saxophone leads, expressive Rhodes piano chords, soft bossa nova drums, upright bass, and a George Benson-inspired improvisational feel, maintaining a cohesive and relaxing vibe." def set_bebop_jazz_prompt(): return "Bebop jazz with fast-paced saxophone solos, intricate piano runs, walking basslines, complex drum patterns, and a Charlie Parker-inspired improvisational style, featuring dynamic shifts and virtuosic performances." def set_baroque_classical_prompt(): return "Baroque classical with harpsichord, delicate violin, cello, flute, and a Vivaldi-inspired melodic structure, featuring intricate counterpoint and elegant ornamentation, maintaining a consistent baroque elegance." def set_romantic_classical_prompt(): return "Romantic classical with lush strings, expressive piano, dramatic brass, subtle woodwinds, and a Chopin-inspired melodic flow, building emotional intensity with sweeping crescendos and delicate pianissimos." def set_boom_bap_hiphop_prompt(): return "Boom bap hip-hop with gritty sampled drums, deep basslines, jazzy piano loops, vinyl scratches, and a J Dilla-inspired rhythmic groove, maintaining a consistent head-nodding vibe." def set_trap_hiphop_prompt(): return "Trap hip-hop with hard-hitting 808 bass, snappy snares, rapid hi-hats, eerie synth melodies, and a modern Atlanta-inspired sound, featuring catchy hooks and energetic drops." def set_pop_rock_prompt(): return "Pop rock with catchy electric guitar riffs, uplifting synths, steady drums, melodic basslines, and a Coldplay-inspired anthemic feel, featuring bright intros and powerful choruses." def set_fusion_jazz_prompt(): return "Fusion jazz with electric piano, funky basslines, intricate drum patterns, soaring trumpet, and a Herbie Hancock-inspired groove, blending jazz improvisation with rock and funk elements." def set_edm_prompt(): return "EDM with high-energy synth leads, pounding basslines, four-on-the-floor kicks, euphoric breakdowns, and a festival-ready drop, inspired by artists like Avicii and Calvin Harris." def set_indie_folk_prompt(): return "Indie folk with acoustic guitars, heartfelt vocals, gentle percussion, warm bass, and a Bon Iver-inspired intimate atmosphere, featuring layered harmonies and emotional crescendos." # 5) AUDIO PROCESSING FUNCTIONS (Unchanged) def apply_chorus(segment): delayed = segment - 6 delayed = delayed.set_frame_rate(segment.frame_rate) return segment.overlay(delayed, position=20) def apply_eq(segment): segment = segment.low_pass_filter(8000) segment = segment.high_pass_filter(80) return segment def apply_limiter(segment, max_db=-3.0): if segment.dBFS > max_db: segment = segment - (segment.dBFS - max_db) return segment def apply_final_gain(segment, target_db=-12.0): gain_adjustment = target_db - segment.dBFS return segment + gain_adjustment def apply_fade(segment, fade_in_duration=2000, fade_out_duration=2000): segment = segment.fade_in(fade_in_duration) segment = segment.fade_out(fade_out_duration) return segment # 6) GENERATION & I/O FUNCTIONS (Unchanged) def generate_music(instrumental_prompt: str, cfg_scale: float, top_k: int, top_p: float, temperature: float, total_duration: int, crossfade_duration: int): global musicgen_model if not instrumental_prompt.strip(): return None, "⚠️ Please enter a valid instrumental prompt!" try: start_time = time.time() total_duration = min(max(total_duration, 10), 90) chunk_duration = 15 num_chunks = 2 if total_duration <= 30 else 3 chunk_duration = total_duration / num_chunks overlap_duration = min(1.0, crossfade_duration / 1000.0) generation_duration = chunk_duration + overlap_duration audio_chunks = [] sample_rate = musicgen_model.sample_rate torch.manual_seed(42) np.random.seed(42) for i in range(num_chunks): chunk_prompt = instrumental_prompt print(f"Generating chunk {i+1}/{num_chunks} on GPU (prompt: {chunk_prompt})...") musicgen_model.set_generation_params( duration=generation_duration, use_sampling=True, top_k=top_k, top_p=top_p, temperature=temperature, cfg_coef=cfg_scale ) print_resource_usage(f"Before Chunk {i+1} Generation") with torch.no_grad(): with autocast(): audio_chunk = musicgen_model.generate([chunk_prompt], progress=True)[0] audio_chunk = audio_chunk.cpu().to(dtype=torch.float32) if audio_chunk.dim() == 1: audio_chunk = torch.stack([audio_chunk, audio_chunk], dim=0) elif audio_chunk.dim() == 2 and audio_chunk.shape[0] == 1: audio_chunk = torch.cat([audio_chunk, audio_chunk], dim=0) elif audio_chunk.dim() == 2 and audio_chunk.shape[0] != 2: audio_chunk = audio_chunk[:1, :] audio_chunk = torch.cat([audio_chunk, audio_chunk], dim=0) elif audio_chunk.dim() > 2: audio_chunk = audio_chunk.view(2, -1) if audio_chunk.shape[0] != 2: raise ValueError(f"Expected stereo audio with shape (2, samples), got shape {audio_chunk.shape}") temp_wav_path = f"temp_chunk_{i}.wav" chunk_path = f"chunk_{i}.mp3" torchaudio.save(temp_wav_path, audio_chunk, sample_rate, bits_per_sample=24) segment = AudioSegment.from_wav(temp_wav_path) segment.export(chunk_path, format="mp3", bitrate="320k") os.remove(temp_wav_path) audio_chunks.append(chunk_path) torch.cuda.empty_cache() gc.collect() time.sleep(0.5) print_resource_usage(f"After Chunk {i+1} Generation") print("Combining audio chunks...") final_segment = AudioSegment.from_mp3(audio_chunks[0]) for i in range(1, len(audio_chunks)): next_segment = AudioSegment.from_mp3(audio_chunks[i]) next_segment = next_segment + 1 final_segment = final_segment.append(next_segment, crossfade=crossfade_duration) final_segment = final_segment[:total_duration * 1000] print("Post-processing final track...") final_segment = apply_eq(final_segment) final_segment = apply_chorus(final_segment) final_segment = apply_limiter(final_segment, max_db=-3.0) final_segment = final_segment.normalize(headroom=-6.0) final_segment = apply_final_gain(final_segment, target_db=-12.0) mp3_path = "output_cleaned.mp3" final_segment.export( mp3_path, format="mp3", bitrate="320k", tags={"title": "GhostAI Instrumental", "artist": "GhostAI"} ) print(f"Saved final audio to {mp3_path}") for chunk_path in audio_chunks: os.remove(chunk_path) print_resource_usage("After Final Generation") print(f"Total Generation Time: {time.time() - start_time:.2f} seconds") return mp3_path, "✅ Done!" except Exception as e: return None, f"❌ Generation failed: {e}" finally: torch.cuda.empty_cache() gc.collect() def clear_inputs(): return "", 3.0, 300, 0.95, 1.0, 30, 500 # 7) CUSTOM CSS (Unchanged) css = """ body { background: linear-gradient(135deg, #0A0A0A 0%, #1C2526 100%); color: #E0E0E0; font-family: 'Orbitron', sans-serif; margin: 0; padding: 0; } .header-container { text-align: center; padding: 15px 20px; background: rgba(0, 0, 0, 0.9); border-bottom: 1px solid #00FF9F; box-shadow: 0 0 10px rgba(161, 0, 255, 0.3); } #ghost-logo { font-size: 60px; display: block; margin: 0 auto; animation: glitch-ghost 1.5s infinite; text-shadow: 0 0 10px #A100FF, 0 0 20px #00FF9F; } h1 { color: #A100FF; font-size: 28px; margin: 5px 0; text-shadow: 0 0 5px #A100FF, 0 0 10px #00FF9F; animation: glitch-text 2s infinite; } p { color: #E0E0E0; font-size: 14px; margin: 5px 0; } .input-container { max-width: 1000px; margin: 20px auto; padding: 20px; background: rgba(28, 37, 38, 0.8); border-radius: 10px; box-shadow: 0 0 15px rgba(0, 255, 159, 0.3); } .textbox { background: #1A1A1A; border: 1px solid #A100FF; color: #E0E0E0; border-radius: 5px; padding: 10px; margin-bottom: 20px; } .genre-buttons { display: flex; justify-content: center; gap: 15px; margin-bottom: 20px; } .genre-btn { background: linear-gradient(45deg, #A100FF, #00FF9F); border: none; color: #0A0A0A; font-weight: bold; padding: 10px 20px; border-radius: 5px; transition: transform 0.3s ease, box-shadow 0.3s ease; } .genre-btn:hover { transform: scale(1.05); box-shadow: 0 0 15px #00FF9F; } .settings-container { max-width: 1000px; margin: 20px auto; padding: 20px; background: rgba(28, 37, 38, 0.8); border-radius: 10px; box-shadow: 0 0 15px rgba(0, 255, 159, 0.3); } .action-buttons { display: flex; justify-content: center; gap: 20px; margin-top: 20px; } button { background: linear-gradient(45deg, #A100FF, #00FF9F); border: none; color: #0A0A0A; font-weight: bold; padding: 12px 24px; border-radius: 5px; transition: transform 0.3s ease, box-shadow 0.3s ease; } button:hover { transform: scale(1.05); box-shadow: 0 0 15px #00FF9F; } .output-container { max-width: 1000px; margin: 20px auto; padding: 20px; background: rgba(28, 37, 38, 0.8); border-radius: 10px; box-shadow: 0 0 15px rgba(0, 255, 159, 0.3); text-align: center; } @keyframes glitch-ghost { 0% { transform: translate(0, 0); opacity: 1; } 20% { transform: translate(-5px, 2px); opacity: 0.8; } 40% { transform: translate(5px, -2px); opacity: 0.6; } 60% { transform: translate(-3px, 1px); opacity: 0.9; } 80% { transform: translate(3px, -1px); opacity: 0.7; } 100% { transform: translate(0, 0); opacity: 1; } } @keyframes glitch-text { 0% { transform: translate(0, 0); text-shadow: 0 0 10px #A100FF, 0 0 20px #00FF9F; } 20% { transform: translate(-2px, 1px); text-shadow: 0 0 15px #00FF9F, 0 0 25px #A100FF; } 40% { transform: translate(2px, -1px); text-shadow: 0 0 10px #A100FF, 0 0 30px #00FF9F; } 60% { transform: translate(-1px, 2px); text-shadow: 0 0 15px #00FF9F, 0 0 20px #A100FF; } 80% { transform: translate(1px, -2px); text-shadow: 0 0 10px #A100FF, 0 0 25px #00FF9F; } 100% { transform: translate(0, 0); text-shadow: 0 0 10px #A100FF, 0 0 20px #00FF9F; } } @font-face { font-family: 'Orbitron'; src: url('https://fonts.gstatic.com/s/orbitron/v29/yMJRMIlzdpvBhQQL_Qq7dy0.woff2') format('woff2'); } """ # 8) BUILD WITH BLOCKS with gr.Blocks(css=css) as demo: gr.Markdown("""

GhostAI Music Generator

Summon the Sound of the Unknown

""") with gr.Column(elem_classes="input-container"): instrumental_prompt = gr.Textbox( label="Instrumental Prompt", placeholder="Click a genre button below or type your own instrumental prompt", lines=4, elem_classes="textbox" ) with gr.Row(elem_classes="genre-buttons"): classic_rock_btn = gr.Button("Classic Rock", elem_classes="genre-btn") alternative_rock_btn = gr.Button("Alternative Rock", elem_classes="genre-btn") detroit_techno_btn = gr.Button("Detroit Techno", elem_classes="genre-btn") deep_house_btn = gr.Button("Deep House", elem_classes="genre-btn") smooth_jazz_btn = gr.Button("Smooth Jazz", elem_classes="genre-btn") bebop_jazz_btn = gr.Button("Bebop Jazz", elem_classes="genre-btn") baroque_classical_btn = gr.Button("Baroque Classical", elem_classes="genre-btn") romantic_classical_btn = gr.Button("Romantic Classical", elem_classes="genre-btn") boom_bap_hiphop_btn = gr.Button("Boom Bap Hip-Hop", elem_classes="genre-btn") trap_hiphop_btn = gr.Button("Trap Hip-Hop", elem_classes="genre-btn") pop_rock_btn = gr.Button("Pop Rock", elem_classes="genre-btn") fusion_jazz_btn = gr.Button("Fusion Jazz", elem_classes="genre-btn") edm_btn = gr.Button("EDM", elem_classes="genre-btn") indie_folk_btn = gr.Button("Indie Folk", elem_classes="genre-btn") with gr.Column(elem_classes="settings-container"): cfg_scale = gr.Slider( label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=3.0, step=0.1, info="Higher values make the instrumental more closely follow the prompt, but may reduce diversity." ) top_k = gr.Slider( label="Top-K Sampling", minimum=10, maximum=500, value=300, step=10, info="Limits sampling to the top k most likely tokens. Higher values increase diversity." ) top_p = gr.Slider( label="Top-P Sampling (Nucleus Sampling)", minimum=0.0, maximum=1.0, value=0.95, step=0.1, info="Keeps tokens with cumulative probability above p. Higher values increase diversity." ) temperature = gr.Slider( label="Temperature", minimum=0.1, maximum=2.0, value=1.0, step=0.1, info="Controls randomness. Higher values make output more diverse but less predictable." ) total_duration = gr.Slider( label="Total Duration (seconds)", minimum=10, maximum=90, value=30, step=1, info="Total duration of the track (10 to 90 seconds)." ) crossfade_duration = gr.Slider( label="Crossfade Duration (ms)", minimum=100, maximum=2000, value=500, step=100, info="Crossfade duration between chunks for smoother transitions." ) with gr.Row(elem_classes="action-buttons"): gen_btn = gr.Button("Generate Music") clr_btn = gr.Button("Clear Inputs") with gr.Column(elem_classes="output-container"): out_audio = gr.Audio(label="Generated Stereo Instrumental Track", type="filepath") status = gr.Textbox(label="Status", interactive=False) classic_rock_btn.click(set_classic_rock_prompt, inputs=None, outputs=[instrumental_prompt]) alternative_rock_btn.click(set_alternative_rock_prompt, inputs=None, outputs=[instrumental_prompt]) detroit_techno_btn.click(set_detroit_techno_prompt, inputs=None, outputs=[instrumental_prompt]) deep_house_btn.click(set_deep_house_prompt, inputs=None, outputs=[instrumental_prompt]) smooth_jazz_btn.click(set_smooth_jazz_prompt, inputs=None, outputs=[instrumental_prompt]) bebop_jazz_btn.click(set_bebop_jazz_prompt, inputs=None, outputs=[instrumental_prompt]) baroque_classical_btn.click(set_baroque_classical_prompt, inputs=None, outputs=[instrumental_prompt]) romantic_classical_btn.click(set_romantic_classical_prompt, inputs=None, outputs=[instrumental_prompt]) boom_bap_hiphop_btn.click(set_boom_bap_hiphop_prompt, inputs=None, outputs=[instrumental_prompt]) trap_hiphop_btn.click(set_trap_hiphop_prompt, inputs=None, outputs=[instrumental_prompt]) pop_rock_btn.click(set_pop_rock_prompt, inputs=None, outputs=[instrumental_prompt]) fusion_jazz_btn.click(set_fusion_jazz_prompt, inputs=None, outputs=[instrumental_prompt]) edm_btn.click(set_edm_prompt, inputs=None, outputs=[instrumental_prompt]) indie_folk_btn.click(set_indie_folk_prompt, inputs=None, outputs=[instrumental_prompt]) gen_btn.click( generate_music, inputs=[instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, crossfade_duration], outputs=[out_audio, status] ) clr_btn.click( clear_inputs, inputs=None, outputs=[instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, crossfade_duration] ) # 9) TURN OFF OPENAPI/DOCS app = demo.launch( server_name="0.0.0.0", server_port=9999, share=False, inbrowser=False, show_error=True ) try: fastapi_app = demo._server.app fastapi_app.docs_url = None fastapi_app.redoc_url = None fastapi_app.openapi_url = None except Exception: pass