--- license: apache-2.0 --- # Model Card for layer_xl_transparent_attn This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details LoRA weights for SDXL using huggingface diffusers converted from this [weight](https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_xl_transparent_attn.safetensors). ### Model Description - **Developed by:** Lvmin Zhang et al - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** SDXL LoRA-256 - **Language(s) (NLP):** [More Information Needed] - **License:** Apache 2.0 - **Finetuned from model [optional]:** SDXL ### Model Sources [optional] - **Repository:** https://github.com/layerdiffusion/LayerDiffuse - **Paper [optional]:** https://arxiv.org/abs/2402.17113 - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model ```bash from diffusers import StableDiffusionXLPipeline from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True, variant="fp16", torch_dtype=torch.float16, ) # pipe.enable_xformers_memory_efficient_attention() pipe.to("cuda") pipe.load_lora_weights(hf_hub_download("gxkok/layer-diffusion-xl-transparent-attn-lora", "pytorch_lora_weights.safetensors")) ``` [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]