hamishivi commited on
Commit
db14560
·
verified ·
1 Parent(s): 1c191b9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -4
README.md CHANGED
@@ -9,7 +9,7 @@ base_model:
9
  # RDS+ Multitask Tulu 2 326k
10
 
11
  This is a model trained on 326k samples selected by RDS+ for multiple tasks at once from the [Tulu 2 unfiltered dataset](https://huggingface.co/datasets/hamishivi/tulu-2-unfiltered).
12
- For more details, please see the paper [Practical Large-Scale Data Selection for Instruction Tuning](todo) and [associated codebase](https://github.com/hamishivi/automated-instruction-selection).
13
 
14
  This model outperforms the original [Tulu 2 SFT model](https://huggingface.co/allenai/tulu-2-7b) by selecting more targeted data from the same original pool of data.
15
 
@@ -32,7 +32,7 @@ This model outperforms the original [Tulu 2 SFT model](https://huggingface.co/al
32
 
33
  ## Results
34
 
35
- For more results and analysis, please see [our paper](todo).
36
 
37
 
38
  | Method | MMLU | GSM8k | BBH | TydiQA | Codex | Squad | AlpacaEval | Average |
@@ -84,8 +84,9 @@ If you find this model or data is useful in your work, please cite it with:
84
  title={{Practical Large-Scale Data Selection for Instruction Tuning}},
85
  author={{Hamish Ivison and Muru Zhang and Faeze Brahman and Pang Wei Koh and Pradeep Dasigi}}
86
  year={2025},
87
- eprint={todo},
88
  archivePrefix={arXiv},
89
- primaryClass={cs.CL}
 
90
  }
91
  ```
 
9
  # RDS+ Multitask Tulu 2 326k
10
 
11
  This is a model trained on 326k samples selected by RDS+ for multiple tasks at once from the [Tulu 2 unfiltered dataset](https://huggingface.co/datasets/hamishivi/tulu-2-unfiltered).
12
+ For more details, please see the paper [Practical Large-Scale Data Selection for Instruction Tuning](https://arxiv.org/abs/2503.01807) and [associated codebase](https://github.com/hamishivi/automated-instruction-selection).
13
 
14
  This model outperforms the original [Tulu 2 SFT model](https://huggingface.co/allenai/tulu-2-7b) by selecting more targeted data from the same original pool of data.
15
 
 
32
 
33
  ## Results
34
 
35
+ For more results and analysis, please see [our paper](https://arxiv.org/abs/2503.01807).
36
 
37
 
38
  | Method | MMLU | GSM8k | BBH | TydiQA | Codex | Squad | AlpacaEval | Average |
 
84
  title={{Practical Large-Scale Data Selection for Instruction Tuning}},
85
  author={{Hamish Ivison and Muru Zhang and Faeze Brahman and Pang Wei Koh and Pradeep Dasigi}}
86
  year={2025},
87
+ eprint={2503.01807},
88
  archivePrefix={arXiv},
89
+ primaryClass={cs.CL},
90
+ url={https://arxiv.org/abs/2503.01807}
91
  }
92
  ```