File size: 2,094 Bytes
b8a1c54
 
 
 
7feb3da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a1c54
 
 
 
 
 
c7615d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7feb3da
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
datasets:
- csebuetnlp/xlsum
language:
  - am
  - ar
  - az
  - bn
  - my
  - zh
  - en
  - fr
  - gu
  - ha
  - hi
  - ig
  - id
  - ja
  - rn
  - ko
  - ky
  - mr
  - ne
  - om
  - ps
  - fa
  - pcm
  - pt
  - pa
  - ru
  - gd
  - sr
  - si
  - so
  - es
  - sw
  - ta
  - te
  - th
  - ti
  - tr
  - uk
  - ur
  - uz
  - vi
  - cy
  - yo
multilinguality:
  - multilingual
pipeline_tag: summarization
---
# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

This model is fine-tuned version of [DeltaLM-base](https://huggingface.co/nguyenvulebinh/deltalm-base) on the [XLSum dataset](https://huggingface.co/datasets/csebuetnlp/xlsum)
, aiming for abstractive multilingual summarization.

It achieves the following results on the evaluation set:
- rouge-1: 18.2
- rouge-2: 7.6
- rouge-l: 14.9
- rouge-lsum: 14.7

## Dataset desctiption
[XLSum dataset](https://huggingface.co/datasets/csebuetnlp/xlsum) is a comprehensive and diverse dataset comprising 1.35 million professionally annotated article-summary pairs from BBC, extracted using a set of carefully designed heuristics. The dataset covers 45 languages ranging from low to high-resource, for many of which no public dataset is currently available. XL-Sum is highly abstractive, concise, and of high quality, as indicated by human and intrinsic evaluation.

## Languages
- amharic
- arabic
- azerbaijani
- bengali
- burmese
- chinese_simplified
- chinese_traditional
- english
- french
- gujarati
- hausa
- hindi
- igbo
- indonesian
- japanese
- kirundi
- korean
- kyrgyz
- marathi
- nepali
- oromo
- pashto
- persian
- pidgin
- portuguese
- punjabi
- russian
- scottish_gaelic
- serbian_cyrillic
- serbian_latin
- sinhala
- somali
- spanish
- swahili
- tamil
- telugu
- thai
- tigrinya
- turkish
- ukrainian
- urdu
- uzbek
- vietnamese
- welsh
- yoruba

## Training hyperparameters

The model trained with a p4d.24xlarge instance on aws sagemaker, with the following config:
- model: deltalm base
- batch size: 8
- learning rate: 1e-5
- number of epochs: 3
- warmup steps: 500
- weight decay: 0.01