### This is example of the script that will be run in the test environment. ### You can change the rest of the code to define and test your solution. ### However, you should not change the signature of the provided function. ### The script saves "submission.parquet" file in the current directory. ### You can use any additional files and subdirectories to organize your code. from pathlib import Path from tqdm import tqdm import pandas as pd import numpy as np from datasets import load_dataset from typing import Dict def empty_solution(sample): '''Return a minimal valid solution, i.e. 2 vertices and 1 edge.''' return np.zeros((2,3)), [(0, 1)] class Sample(Dict): def pick_repr_data(self, x): if hasattr(x, 'shape'): return x.shape if isinstance(x, (str, float, int)): return x if isinstance(x, list): return [type(x[0])] if len(x) > 0 else [] return type(x) def __repr__(self): # return str({k: v.shape if hasattr(v, 'shape') else [type(v[0])] if isinstance(v, list) else type(v) for k,v in self.items()}) return str({k: self.pick_repr_data(v) for k,v in self.items()}) import json if __name__ == "__main__": print ("------------ Loading dataset------------ ") param_path = Path('params.json') print(param_path) with param_path.open() as f: params = json.load(f) print(params) import os print('pwd:') os.system('pwd') print(os.system('ls -lahtr')) print('/tmp/data/') print(os.system('ls -lahtr /tmp/data/')) print('/tmp/data/data') print(os.system('ls -lahtrR /tmp/data/data')) data_path_test_server = Path('/tmp/data') data_path_local = Path().home() / '.cache/huggingface/datasets/usm3d___hoho25k_test_x/' if data_path_test_server.exists(): # data_path = data_path_test_server TEST_ENV = True else: # data_path = data_path_local TEST_ENV = False from huggingface_hub import snapshot_download _ = snapshot_download( repo_id=params['dataset'], local_dir="/tmp/data", repo_type="dataset", ) data_path = data_path_test_server print(data_path) # dataset = load_dataset(params['dataset'], trust_remote_code=True, use_auth_token=params['token']) # data_files = { # "validation": [str(p) for p in [*data_path.rglob('*validation*.arrow')]+[*data_path.rglob('*public*/**/*.tar')]], # "test": [str(p) for p in [*data_path.rglob('*test*.arrow')]+[*data_path.rglob('*private*/**/*.tar')]], # } data_files = { "validation": [str(p) for p in data_path.rglob('*public*/**/*.tar')], "test": [str(p) for p in data_path.rglob('*private*/**/*.tar')], } print(data_files) dataset = load_dataset( str(data_path / 'hoho25k_test_x.py'), data_files=data_files, trust_remote_code=True, writer_batch_size=100 ) # if TEST_ENV: # dataset = load_dataset( # "webdataset", # data_files=data_files, # trust_remote_code=True, # # streaming=True # ) print('load with webdataset') # else: # dataset = load_dataset( # "arrow", # data_files=data_files, # trust_remote_code=True, # # streaming=True # ) # print('load with arrow') print(dataset, flush=True) # dataset = load_dataset('webdataset', data_files={) print('------------ Now you can do your solution ---------------') solution = [] for subset_name in dataset: for i, sample in enumerate(tqdm(dataset[subset_name])): # replace this with your solution print(Sample(sample), flush=True) print('------') pred_vertices, pred_edges = empty_solution(sample) solution.append({ 'order_id': sample['order_id'], 'wf_vertices': pred_vertices.tolist(), 'wf_edges': pred_edges }) print('------------ Saving results ---------------') sub = pd.DataFrame(solution, columns=["order_id", "wf_vertices", "wf_edges"]) sub.to_parquet("submission.parquet") print("------------ Done ------------ ")