Upload 5 files
Browse files- README.md +18 -0
- handler.py +255 -0
- model_index.json +32 -0
- requirements.txt +20 -0
- teacache.py +146 -0
README.md
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
base_model:
|
5 |
+
- tencent/HunyuanVideo
|
6 |
+
pipeline_tag: text-to-video
|
7 |
+
library_name: diffusers
|
8 |
+
tags:
|
9 |
+
- HunyuanVideo
|
10 |
+
- Tencent
|
11 |
+
- Video
|
12 |
+
license: other
|
13 |
+
license_name: tencent-hunyuan-community
|
14 |
+
license_link: LICENSE
|
15 |
+
---
|
16 |
+
|
17 |
+
This model is [HunyuanVideo](https://huggingface.co/tencent/HunyuanVideo) adapted to run on the Hugging Face Inference Endpoints.
|
18 |
+
|
handler.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Dict, Any, Optional
|
3 |
+
import base64
|
4 |
+
import logging
|
5 |
+
import random
|
6 |
+
import traceback
|
7 |
+
import torch
|
8 |
+
from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
|
9 |
+
from varnish import Varnish
|
10 |
+
|
11 |
+
from enhance_a_video import enable_enhance, inject_enhance_for_hunyuanvideo, set_enhance_weight
|
12 |
+
from teacache import enable_teacache, disable_teacache
|
13 |
+
|
14 |
+
# Configure logging
|
15 |
+
logging.basicConfig(level=logging.INFO)
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
@dataclass
|
19 |
+
class GenerationConfig:
|
20 |
+
"""Configuration for video generation"""
|
21 |
+
# Content settings
|
22 |
+
prompt: str
|
23 |
+
negative_prompt: str = ""
|
24 |
+
|
25 |
+
# Model settings
|
26 |
+
num_frames: int = 49 # Should be 4k + 1 format
|
27 |
+
height: int = 320
|
28 |
+
width: int = 576
|
29 |
+
num_inference_steps: int = 50
|
30 |
+
guidance_scale: float = 7.0
|
31 |
+
|
32 |
+
# Reproducibility
|
33 |
+
seed: int = -1
|
34 |
+
|
35 |
+
# Varnish post-processing settings
|
36 |
+
fps: int = 30
|
37 |
+
double_num_frames: bool = False
|
38 |
+
super_resolution: bool = False
|
39 |
+
grain_amount: float = 0.0
|
40 |
+
quality: int = 18 # CRF scale (0-51, lower is better)
|
41 |
+
|
42 |
+
# Audio settings
|
43 |
+
enable_audio: bool = False
|
44 |
+
audio_prompt: str = ""
|
45 |
+
audio_negative_prompt: str = "voices, voice, talking, speaking, speech"
|
46 |
+
|
47 |
+
# TeaCache settings
|
48 |
+
enable_teacache: bool = True
|
49 |
+
teacache_threshold: float = 0.15 # values: 0 (original), 0.1 (1.6x speedup), 0.15 (2.1x speedup)
|
50 |
+
|
51 |
+
|
52 |
+
# Enhance-A-Video settings
|
53 |
+
enable_enhance_a_video: bool = True
|
54 |
+
enhance_a_video_weight: float = 4.0
|
55 |
+
|
56 |
+
def validate_and_adjust(self) -> 'GenerationConfig':
|
57 |
+
"""Validate and adjust parameters"""
|
58 |
+
# Ensure num_frames follows 4k + 1 format
|
59 |
+
k = (self.num_frames - 1) // 4
|
60 |
+
self.num_frames = (k * 4) + 1
|
61 |
+
|
62 |
+
# Set random seed if not specified
|
63 |
+
if self.seed == -1:
|
64 |
+
self.seed = random.randint(0, 2**32 - 1)
|
65 |
+
|
66 |
+
return self
|
67 |
+
|
68 |
+
class EndpointHandler:
|
69 |
+
"""Handles video generation requests using HunyuanVideo and Varnish"""
|
70 |
+
|
71 |
+
def __init__(self, path: str = ""):
|
72 |
+
"""Initialize handler with models
|
73 |
+
|
74 |
+
Args:
|
75 |
+
path: Path to model weights
|
76 |
+
"""
|
77 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
78 |
+
|
79 |
+
|
80 |
+
# Initialize transformer with Enhance-A-Video injection first
|
81 |
+
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
|
82 |
+
path,
|
83 |
+
subfolder="transformer",
|
84 |
+
torch_dtype=torch.bfloat16
|
85 |
+
)
|
86 |
+
inject_enhance_for_hunyuanvideo(transformer)
|
87 |
+
|
88 |
+
# Initialize HunyuanVideo pipeline with the enhanced transformer
|
89 |
+
self.pipeline = HunyuanVideoPipeline.from_pretrained(
|
90 |
+
path,
|
91 |
+
transformer=transformer,
|
92 |
+
torch_dtype=torch.float16,
|
93 |
+
).to(self.device)
|
94 |
+
|
95 |
+
|
96 |
+
# Initialize text encoders in float16
|
97 |
+
self.pipeline.text_encoder = self.pipeline.text_encoder.half()
|
98 |
+
self.pipeline.text_encoder_2 = self.pipeline.text_encoder_2.half()
|
99 |
+
|
100 |
+
# Initialize transformer in bfloat16
|
101 |
+
self.pipeline.transformer = self.pipeline.transformer.to(torch.bfloat16)
|
102 |
+
|
103 |
+
# Initialize VAE in float16
|
104 |
+
self.pipeline.vae = self.pipeline.vae.half()
|
105 |
+
|
106 |
+
# Initialize Varnish for post-processing
|
107 |
+
self.varnish = Varnish(
|
108 |
+
device=self.device,
|
109 |
+
model_base_dir="/repository/varnish"
|
110 |
+
)
|
111 |
+
|
112 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
113 |
+
"""Process video generation requests
|
114 |
+
|
115 |
+
Args:
|
116 |
+
data: Request data containing:
|
117 |
+
- inputs (str): Prompt for video generation
|
118 |
+
- parameters (dict): Generation parameters
|
119 |
+
|
120 |
+
Returns:
|
121 |
+
Dictionary containing:
|
122 |
+
- video: Base64 encoded MP4 data URI
|
123 |
+
- content-type: MIME type
|
124 |
+
- metadata: Generation metadata
|
125 |
+
"""
|
126 |
+
# Extract inputs
|
127 |
+
inputs = data.pop("inputs", data)
|
128 |
+
if isinstance(inputs, dict):
|
129 |
+
prompt = inputs.get("prompt", "")
|
130 |
+
else:
|
131 |
+
prompt = inputs
|
132 |
+
|
133 |
+
params = data.get("parameters", {})
|
134 |
+
|
135 |
+
# Create and validate config
|
136 |
+
config = GenerationConfig(
|
137 |
+
prompt=prompt,
|
138 |
+
negative_prompt=params.get("negative_prompt", ""),
|
139 |
+
num_frames=params.get("num_frames", 49),
|
140 |
+
height=params.get("height", 320),
|
141 |
+
width=params.get("width", 576),
|
142 |
+
num_inference_steps=params.get("num_inference_steps", 50),
|
143 |
+
guidance_scale=params.get("guidance_scale", 7.0),
|
144 |
+
seed=params.get("seed", -1),
|
145 |
+
fps=params.get("fps", 30),
|
146 |
+
double_num_frames=params.get("double_num_frames", False),
|
147 |
+
super_resolution=params.get("super_resolution", False),
|
148 |
+
grain_amount=params.get("grain_amount", 0.0),
|
149 |
+
quality=params.get("quality", 18),
|
150 |
+
enable_audio=params.get("enable_audio", False),
|
151 |
+
audio_prompt=params.get("audio_prompt", ""),
|
152 |
+
audio_negative_prompt=params.get("audio_negative_prompt", "voices, voice, talking, speaking, speech"),
|
153 |
+
enable_teacache=params.get("enable_teacache", True),
|
154 |
+
|
155 |
+
# values: 0 (original), 0.1 (1.6x speedup), 0.15 (2.1x speedup).
|
156 |
+
teacache_threshold=params.get("teacache_threshold", 0.15),
|
157 |
+
|
158 |
+
enable_enhance_a_video=params.get("enable_enhance_a_video", True),
|
159 |
+
enhance_a_video_weight=params.get("enhance_a_video_weight", 4.0)
|
160 |
+
).validate_and_adjust()
|
161 |
+
|
162 |
+
try:
|
163 |
+
# Set random seeds
|
164 |
+
if config.seed != -1:
|
165 |
+
torch.manual_seed(config.seed)
|
166 |
+
random.seed(config.seed)
|
167 |
+
generator = torch.Generator(device=self.device).manual_seed(config.seed)
|
168 |
+
else:
|
169 |
+
generator = None
|
170 |
+
|
171 |
+
# Configure TeaCache
|
172 |
+
#if config.enable_teacache:
|
173 |
+
# enable_teacache(
|
174 |
+
# self.pipeline.transformer,
|
175 |
+
# num_inference_steps=config.num_inference_steps,
|
176 |
+
# rel_l1_thresh=config.teacache_threshold
|
177 |
+
# )
|
178 |
+
#else:
|
179 |
+
# disable_teacache(self.pipeline.transformer)
|
180 |
+
|
181 |
+
# Configure Enhance-A-Video weight if enabled
|
182 |
+
if config.enable_enhance_a_video:
|
183 |
+
set_enhance_weight(config.enhance_a_video_weight)
|
184 |
+
enable_enhance()
|
185 |
+
else:
|
186 |
+
# Reset enhance weight to 0 to effectively disable it
|
187 |
+
set_enhance_weight(0)
|
188 |
+
|
189 |
+
# Generate video frames
|
190 |
+
with torch.inference_mode():
|
191 |
+
output = self.pipeline(
|
192 |
+
prompt=config.prompt,
|
193 |
+
|
194 |
+
# Failed to generate video: HunyuanVideoPipeline.__call__() got an unexpected keyword argument 'negative_prompt'
|
195 |
+
#negative_prompt=config.negative_prompt,
|
196 |
+
|
197 |
+
num_frames=config.num_frames,
|
198 |
+
height=config.height,
|
199 |
+
width=config.width,
|
200 |
+
num_inference_steps=config.num_inference_steps,
|
201 |
+
guidance_scale=config.guidance_scale,
|
202 |
+
generator=generator,
|
203 |
+
output_type="pt",
|
204 |
+
).frames
|
205 |
+
|
206 |
+
# Process with Varnish
|
207 |
+
import asyncio
|
208 |
+
try:
|
209 |
+
loop = asyncio.get_event_loop()
|
210 |
+
except RuntimeError:
|
211 |
+
loop = asyncio.new_event_loop()
|
212 |
+
asyncio.set_event_loop(loop)
|
213 |
+
|
214 |
+
result = loop.run_until_complete(
|
215 |
+
self.varnish(
|
216 |
+
input_data=output,
|
217 |
+
fps=config.fps,
|
218 |
+
double_num_frames=config.double_num_frames,
|
219 |
+
super_resolution=config.super_resolution,
|
220 |
+
grain_amount=config.grain_amount,
|
221 |
+
enable_audio=config.enable_audio,
|
222 |
+
audio_prompt=config.audio_prompt,
|
223 |
+
audio_negative_prompt=config.audio_negative_prompt,
|
224 |
+
)
|
225 |
+
)
|
226 |
+
|
227 |
+
# Get video data URI
|
228 |
+
video_uri = loop.run_until_complete(
|
229 |
+
result.write(
|
230 |
+
type="data-uri",
|
231 |
+
quality=config.quality
|
232 |
+
)
|
233 |
+
)
|
234 |
+
|
235 |
+
return {
|
236 |
+
"video": video_uri,
|
237 |
+
"content-type": "video/mp4",
|
238 |
+
"metadata": {
|
239 |
+
"width": result.metadata.width,
|
240 |
+
"height": result.metadata.height,
|
241 |
+
"num_frames": result.metadata.frame_count,
|
242 |
+
"fps": result.metadata.fps,
|
243 |
+
"duration": result.metadata.duration,
|
244 |
+
"seed": config.seed,
|
245 |
+
"enable_teacache": config.enable_teacache,
|
246 |
+
"teacache_threshold": config.teacache_threshold if config.enable_teacache else 0,
|
247 |
+
"enable_enhance_a_video": config.enable_enhance_a_video,
|
248 |
+
"enhance_a_video_weight": config.enhance_a_video_weight if config.enable_enhance_a_video else 0,
|
249 |
+
}
|
250 |
+
}
|
251 |
+
|
252 |
+
except Exception as e:
|
253 |
+
message = f"Error generating video ({str(e)})\n{traceback.format_exc()}"
|
254 |
+
logger.error(message)
|
255 |
+
raise RuntimeError(message)
|
model_index.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "HunyuanVideoPipeline",
|
3 |
+
"_diffusers_version": "0.32.0.dev0",
|
4 |
+
"scheduler": [
|
5 |
+
"diffusers",
|
6 |
+
"FlowMatchEulerDiscreteScheduler"
|
7 |
+
],
|
8 |
+
"text_encoder": [
|
9 |
+
"transformers",
|
10 |
+
"LlamaModel"
|
11 |
+
],
|
12 |
+
"text_encoder_2": [
|
13 |
+
"transformers",
|
14 |
+
"CLIPTextModel"
|
15 |
+
],
|
16 |
+
"tokenizer": [
|
17 |
+
"transformers",
|
18 |
+
"LlamaTokenizerFast"
|
19 |
+
],
|
20 |
+
"tokenizer_2": [
|
21 |
+
"transformers",
|
22 |
+
"CLIPTokenizer"
|
23 |
+
],
|
24 |
+
"transformer": [
|
25 |
+
"diffusers",
|
26 |
+
"HunyuanVideoTransformer3DModel"
|
27 |
+
],
|
28 |
+
"vae": [
|
29 |
+
"diffusers",
|
30 |
+
"AutoencoderKLHunyuanVideo"
|
31 |
+
]
|
32 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers @ git+https://github.com/huggingface/diffusers.git@main
|
2 |
+
varnish @ git+https://github.com/jbilcke-hf/varnish.git@main
|
3 |
+
|
4 |
+
opencv-python>=4.10.0.84
|
5 |
+
|
6 |
+
transformers==4.48.0
|
7 |
+
huggingface_hub==0.27.1
|
8 |
+
|
9 |
+
tokenizers>=0.20.3
|
10 |
+
accelerate>=1.1.1
|
11 |
+
pandas>=2.0.3
|
12 |
+
numpy
|
13 |
+
einops==0.7.0
|
14 |
+
tqdm>=4.66.5
|
15 |
+
loguru>=0.7.2
|
16 |
+
imageio>=2.34.2
|
17 |
+
imageio-ffmpeg>=0.5.1
|
18 |
+
safetensors>=0.4.5
|
19 |
+
|
20 |
+
moviepy==1.0.3
|
teacache.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# teacache.py
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from typing import Optional, Dict, Union, Any
|
5 |
+
from functools import wraps
|
6 |
+
|
7 |
+
class TeaCacheConfig:
|
8 |
+
"""Configuration for TeaCache acceleration"""
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
rel_l1_thresh: float = 0.15,
|
12 |
+
enable: bool = True
|
13 |
+
):
|
14 |
+
self.rel_l1_thresh = rel_l1_thresh
|
15 |
+
self.enable = enable
|
16 |
+
self._reset_state()
|
17 |
+
|
18 |
+
def _reset_state(self):
|
19 |
+
"""Reset internal state"""
|
20 |
+
self.cnt = 0
|
21 |
+
self.accumulated_rel_l1_distance = 0
|
22 |
+
self.previous_modulated_input = None
|
23 |
+
self.previous_residual = None
|
24 |
+
|
25 |
+
def create_teacache_forward(original_forward):
|
26 |
+
"""Factory function to create a TeaCache-enabled forward pass"""
|
27 |
+
@wraps(original_forward)
|
28 |
+
def teacache_forward(
|
29 |
+
self,
|
30 |
+
hidden_states: torch.Tensor,
|
31 |
+
timestep: torch.Tensor,
|
32 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
33 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
34 |
+
pooled_projections: Optional[torch.Tensor] = None,
|
35 |
+
guidance: Optional[torch.Tensor] = None,
|
36 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
37 |
+
return_dict: bool = True,
|
38 |
+
):
|
39 |
+
# Skip TeaCache if not enabled
|
40 |
+
if not hasattr(self, 'teacache_config') or not self.teacache_config.enable:
|
41 |
+
return original_forward(
|
42 |
+
self,
|
43 |
+
hidden_states=hidden_states,
|
44 |
+
timestep=timestep,
|
45 |
+
encoder_hidden_states=encoder_hidden_states,
|
46 |
+
encoder_attention_mask=encoder_attention_mask,
|
47 |
+
pooled_projections=pooled_projections,
|
48 |
+
guidance=guidance,
|
49 |
+
attention_kwargs=attention_kwargs,
|
50 |
+
return_dict=return_dict
|
51 |
+
)
|
52 |
+
|
53 |
+
config = self.teacache_config
|
54 |
+
|
55 |
+
# Prepare modulation vectors similar to HunyuanVideo implementation
|
56 |
+
if pooled_projections is not None:
|
57 |
+
vec = self.vector_in(pooled_projections)
|
58 |
+
|
59 |
+
if guidance is not None:
|
60 |
+
if vec is None:
|
61 |
+
vec = self.guidance_in(guidance)
|
62 |
+
else:
|
63 |
+
vec = vec + self.guidance_in(guidance)
|
64 |
+
|
65 |
+
# TeaCache optimization logic
|
66 |
+
inp = hidden_states.clone()
|
67 |
+
if hasattr(self.double_blocks[0], 'img_norm1'):
|
68 |
+
# HunyuanVideo specific modulation
|
69 |
+
img_mod1_shift, img_mod1_scale, _, _, _, _ = self.double_blocks[0].img_mod(vec).chunk(6, dim=-1)
|
70 |
+
normed_inp = self.double_blocks[0].img_norm1(inp)
|
71 |
+
modulated_inp = normed_inp * (1 + img_mod1_scale) + img_mod1_shift
|
72 |
+
else:
|
73 |
+
# Fallback modulation
|
74 |
+
normed_inp = self.transformer_blocks[0].norm1(inp)
|
75 |
+
modulated_inp = normed_inp
|
76 |
+
|
77 |
+
# Determine if we should calculate or use cache
|
78 |
+
should_calc = True
|
79 |
+
if config.cnt == 0 or config.cnt == self.num_inference_steps - 1:
|
80 |
+
should_calc = True
|
81 |
+
config.accumulated_rel_l1_distance = 0
|
82 |
+
elif config.previous_modulated_input is not None:
|
83 |
+
coefficients = [7.33226126e+02, -4.01131952e+02, 6.75869174e+01,
|
84 |
+
-3.14987800e+00, 9.61237896e-02]
|
85 |
+
rescale_func = np.poly1d(coefficients)
|
86 |
+
|
87 |
+
rel_l1 = ((modulated_inp - config.previous_modulated_input).abs().mean() /
|
88 |
+
config.previous_modulated_input.abs().mean()).cpu().item()
|
89 |
+
config.accumulated_rel_l1_distance += rescale_func(rel_l1)
|
90 |
+
|
91 |
+
should_calc = config.accumulated_rel_l1_distance >= config.rel_l1_thresh
|
92 |
+
if should_calc:
|
93 |
+
config.accumulated_rel_l1_distance = 0
|
94 |
+
|
95 |
+
config.previous_modulated_input = modulated_inp
|
96 |
+
config.cnt += 1
|
97 |
+
if config.cnt >= self.num_inference_steps:
|
98 |
+
config.cnt = 0
|
99 |
+
|
100 |
+
# Use cache or calculate new result
|
101 |
+
if not should_calc and config.previous_residual is not None:
|
102 |
+
hidden_states += config.previous_residual
|
103 |
+
else:
|
104 |
+
ori_hidden_states = hidden_states.clone()
|
105 |
+
|
106 |
+
# Use original forward pass
|
107 |
+
out = original_forward(
|
108 |
+
self,
|
109 |
+
hidden_states=hidden_states,
|
110 |
+
timestep=timestep,
|
111 |
+
encoder_hidden_states=encoder_hidden_states,
|
112 |
+
encoder_attention_mask=encoder_attention_mask,
|
113 |
+
pooled_projections=pooled_projections,
|
114 |
+
guidance=guidance,
|
115 |
+
attention_kwargs=attention_kwargs,
|
116 |
+
return_dict=True
|
117 |
+
)
|
118 |
+
hidden_states = out["sample"]
|
119 |
+
|
120 |
+
# Store residual for future use
|
121 |
+
config.previous_residual = hidden_states - ori_hidden_states
|
122 |
+
|
123 |
+
if not return_dict:
|
124 |
+
return (hidden_states,)
|
125 |
+
|
126 |
+
return {"sample": hidden_states}
|
127 |
+
|
128 |
+
return teacache_forward
|
129 |
+
|
130 |
+
def enable_teacache(model: Any, num_inference_steps: int, rel_l1_thresh: float = 0.15):
|
131 |
+
"""Enable TeaCache acceleration for a model"""
|
132 |
+
if not hasattr(model, '_original_forward'):
|
133 |
+
model._original_forward = model.forward
|
134 |
+
|
135 |
+
model.teacache_config = TeaCacheConfig(rel_l1_thresh=rel_l1_thresh)
|
136 |
+
model.num_inference_steps = num_inference_steps
|
137 |
+
model.forward = create_teacache_forward(model._original_forward).__get__(model)
|
138 |
+
|
139 |
+
def disable_teacache(model: Any):
|
140 |
+
"""Disable TeaCache acceleration for a model"""
|
141 |
+
if hasattr(model, '_original_forward'):
|
142 |
+
model.forward = model._original_forward
|
143 |
+
del model._original_forward
|
144 |
+
|
145 |
+
if hasattr(model, 'teacache_config'):
|
146 |
+
del model.teacache_config
|