File size: 11,702 Bytes
b11ecdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
import os
import sys

#huggingface实现的前缀微调
class PrefixEncoder(torch.nn.Module):
    def __init__(self,config):
        super(PrefixEncoder,self).__init__()
        self.config=config
        self.device=config.device
        self.dtype=config.dtype
        self.num_virtual_tokens=config.num_virtual_tokens
        self.token_dim=config.token_dim
        self.encoder_hidden_size=config.encoder_hidden_size
        self.num_layers=config.num_layers
        self.prefix_embedding=nn.Parameter(torch.empty(1,self.num_virtual_tokens,self.num_layers*2*self.token_dim,device=config.device,dtype=config.dtype),requires_grad=False)
    def forward(self,input_ids,batch_size):
        prefix_embedding=self.prefix_embedding
        prefix_embedding=prefix_embedding.expand(batch_size,self.num_virtual_tokens,self.num_layers*2*self.token_dim)
        prefix_embedding=prefix_embedding.reshape(batch_size,self.num_virtual_tokens,self.num_layers,2,self.token_dim)
        prefix_embedding=prefix_embedding.permute(3,2,0,1,4)
        k,v=prefix_embedding.chunk(2,dim=0)
        return (k.squeeze(0),v.squeeze(0))


import torch 
import torch.nn as nn
import math
from torch.nn.attention import SDPBackend, sdpa_kernel
from torch.nn import functional as F
def position_embedding(x,position_ids):
    hidden_size=x.size(2)
    seq_len=x.size(1)
    div_term=torch.exp(torch.arange(0,hidden_size,2,device=x.device).float()*(-math.log(10000.0)/hidden_size))
    positional_encoding=torch.zeros(seq_len,hidden_size,device=x.device)
    positional_encoding[:,0::2]=torch.sin(position_ids.float()[:,None]*div_term)
    positional_encoding[:,1::2]=torch.cos(position_ids.float()[:,None]*div_term)
    positional_encoding=positional_encoding.unsqueeze(0)
    return positional_encoding




class VisionTransformer(nn.Module):
    def __init__(self,config):
        super(VisionTransformer,self).__init__()
        self.image_channel=config.image_channel
        self.hidden_size=config.hidden_size
        self.norm_eps=config.norm_eps
        self.patch_size=config.patch_size
        self.output_dim=config.output_dim
        self.dtype=config.dtype
        self.num_patches=config.num_patches
        self.num_virtual_tokens=config.num_virtual_tokens if hasattr(config,"num_virtual_tokens") else None
        self.conv1=nn.Conv2d(self.image_channel,self.hidden_size,self.patch_size,stride=self.patch_size,bias=False,device=config.device,dtype=config.dtype)
        self.ln_pre=nn.LayerNorm(self.hidden_size,eps=self.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype)
        self.transformer=Transformer(config)
        #self.position_ids=torch.arange(config.num_patches+1,dtype=torch.long,device=config.device)
        #self.position_embeddings=nn.Parameter(torch.zeros(1,config.num_patches+1,config.hidden_size))
        #nn.init.normal_(self.position_embeddings)
        #clsToken,用于图像分类任务
        #self.cls_token=nn.Parameter(torch.zeros(1,1,config.hidden_size,device=config.device))
        #分类token不是可训练参数
        self.class_embedding=nn.Parameter(torch.empty(config.hidden_size,device=config.device),requires_grad=False)
        #很明显这里的position_embedding也是一个可学习参数
        self.positional_embedding=nn.Parameter(torch.empty(config.num_patches+1,config.hidden_size,device=config.device),requires_grad=False)
        #可训练参数
        self.proj=nn.Parameter(torch.empty(config.hidden_size,config.output_dim,device=config.device,dtype=config.dtype),requires_grad=False)
        self.ln_post=nn.LayerNorm(self.hidden_size,eps=self.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype)
    def forward(self,hidden_state,use_emotion):
        b,c,h,w=hidden_state.shape
        #获得embedding向量
        hidden_state=self.conv1(hidden_state)
        hidden_state=hidden_state.reshape(b,self.hidden_size,-1).transpose(1,2)
        #添加cls token embedding
        hidden_state=torch.cat((self.class_embedding.expand(b,1,-1).to(hidden_state.dtype),hidden_state),dim=1)
        #使用transformer原论文中的固定位置嵌入
        #hidden_state=hidden_state+position_embedding(hidden_state,self.position_ids)
        hidden_state=hidden_state+self.positional_embedding.unsqueeze(0).to(hidden_state.dtype)
        hidden_state=self.ln_pre(hidden_state)
        hidden_state=self.transformer(hidden_state,use_emotion)
        #提取cls token输出 与image patch输出
        cls_state=hidden_state[:,0,:]
        cls_state=self.ln_post(cls_state)
        cls_state=torch.matmul(cls_state,self.proj)
        #image_state=hidden_state[:,1:,:]
        #image_state size (batch_size,49,768)
        return cls_state
    
class Transformer(nn.Module):
    def __init__(self,config):
        super(Transformer,self).__init__()
        self.resblocks=nn.ModuleList([ResidualAttentionBlock(config) for _ in range(config.num_layers)])
        self.prefix=PrefixEncoder(config)
        prefix_tokens=torch.arange(0,config.num_virtual_tokens,device=config.device,dtype=torch.long)
        self.register_buffer("prefix_tokens",prefix_tokens)
    def forward(self,hidden_state,use_emotion):
        if use_emotion:
            b,n,h=hidden_state.shape
            prefix_k,prefix_v=self.prefix(self.prefix_tokens,b)
            for index,resblock in enumerate(self.resblocks):
                #在每一层之前提取前缀向量输入到resblock中进行拼接
                hidden_state=resblock(hidden_state,prefix_k[index],prefix_v[index])
            return hidden_state
        else:
            for index,resblock in enumerate(self.resblocks):
                #在每一层之前提取前缀向量输入到resblock中进行拼接
                hidden_state=resblock(hidden_state)
            return hidden_state
            

            



class ResidualAttentionBlock(nn.Module):
    def __init__(self,config):
        super(ResidualAttentionBlock,self).__init__()
        self.ln_1=nn.LayerNorm(config.hidden_size,eps=config.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype)
        self.ln_2=nn.LayerNorm(config.hidden_size,eps=config.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype)
        #self.attn=nn.MultiheadAttention(config.hidden_size,config.num_heads,device=config.device,dtype=config.dtype)
        self.attn=MultiHeadAttention(config)
        self.mlp=MLP(config)
    def forward(self,hidden_state,prefix_k=None,prefix_v=None):
        residual=hidden_state
        hidden_state=self.ln_1(hidden_state)
        hidden_state=self.attn(hidden_state,prefix_k,prefix_v)
        hidden_state=residual+hidden_state
        residual=hidden_state
        hidden_state=self.ln_2(hidden_state)
        hidden_state=self.mlp(hidden_state)
        hidden_state=residual+hidden_state
        return hidden_state

class MultiHeadAttention(nn.Module):
    def __init__(self,config):
        super(MultiHeadAttention,self).__init__()
        self.hidden_size=config.hidden_size
        self.num_heads=config.num_heads
        self.head_size=self.hidden_size//self.num_heads
        #nn.Parameter包含weight和bias可训练参数
        self.in_proj_weight=nn.Parameter(torch.empty(3*config.hidden_size,config.hidden_size,device=config.device,dtype=config.dtype),requires_grad=False)
        self.in_proj_bias=nn.Parameter(torch.empty(3*config.hidden_size,device=config.device,dtype=config.dtype),requires_grad=False)
        #self.q_linear=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device)
        #self.k_linear=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device)
        #self.v_linear=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device)
        self.out_proj=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device,dtype=config.dtype)
    def forward(self,hidden_state,prefix_k=None,prefix_v=None):
        b,n,h=hidden_state.shape
        #q=self.q_linear(hidden_state).view(b,n,self.num_heads,self.head_size).permute(0,2,1,3)
        #k=self.k_linear(hidden_state).view(b,n,self.num_heads,self.head_size).permute(0,2,3,1)
        #v=self.v_linear(hidden_state).view(b,n,self.num_heads,self.head_size).permute(0,2,1,3)
        q,k,v=(torch.matmul(hidden_state,self.in_proj_weight.T)+self.in_proj_bias.expand(b,n,-1)).chunk(3,dim=-1)
        if prefix_k is not None and prefix_v is not None:
            #将前缀插入到序列之前
            #print("origional k.shape",prefix_k.shape)
            k=torch.cat((prefix_k,k),dim=1)
            v=torch.cat((prefix_v,v),dim=1)
            #print("model original k :",k[:,0,0])
        bk,nk,hk=k.shape
        bq,nq,hq=q.shape
        q=q.view(bq,nq,self.num_heads,self.head_size).permute(0,2,1,3)
        k=k.view(bk,nk,self.num_heads,self.head_size).permute(0,2,1,3)
        v=v.view(bk,nk,self.num_heads,self.head_size).permute(0,2,1,3)
        attention_logits=F.scaled_dot_product_attention(q, k, v)
        attention_logits=attention_logits.permute(0,2,1,3).contiguous().view(bk,nq,self.hidden_size)
        attention_output=self.out_proj(attention_logits)
        return attention_output



class GELU(nn.Module):
    """
    误差函数erf:
    erf(x)=2/sqrt(pi)*integral(exp(-t^2),t=0,x)
    其中t是一个虚拟变量,用于表示从0到x的积分范围内的每一个点,具体来说:
    x是误差函数的输入参数,表示积分的上限
    t是积分变量,它从0变化到x,在每个点上计算e-t^2的值
    e-t^2是被积函数,表示每个t点上的高斯分布的概率密度。
    通过积分,误差函数计算了从0到x的高斯分布的概率累积值,具体来说,误差函数的积分部分计算的是区间[0,x]内高斯分布的概率密度的积分
    """
    def forward(self,x):
        old_dtype=x.dtype
        x=x.to(torch.float32)
        return (0.5*x*(1.0+torch.erf(x/torch.sqrt(2.0)))).to(old_dtype)
    
class QuickGELU(nn.Module):
    def __init__(self):
        super(QuickGELU,self).__init__()
    def forward(self,x):
        old_dtype=x.dtype
        x=x.to(torch.float32)
        return (x*torch.sigmoid(1.702*x)).to(old_dtype)
    

class MLP(nn.Module):
    def __init__(self,config):
        super(MLP,self).__init__()
        self.hidden_size=config.hidden_size
        self.c_fc=nn.Linear(self.hidden_size,4*self.hidden_size,device=config.device,bias=True,dtype=config.dtype)
        self.gelu=QuickGELU()
        self.c_proj=nn.Linear(self.hidden_size*4,self.hidden_size,device=config.device,bias=True,dtype=config.dtype)
    def forward(self,hidden_state):
        hidden_state=self.c_fc(hidden_state)
        hidden_state=self.gelu(hidden_state)
        hidden_state=self.c_proj(hidden_state)
        return hidden_state



class ViTConfig:
    def __init__(self,image_channel,hidden_size,num_heads,num_layers,patch_size,num_patches,output_dim,norm_eps,device):
        self.image_channel=image_channel
        self.hidden_size=hidden_size
        self.num_heads=num_heads
        self.num_layers=num_layers
        self.patch_size=patch_size
        self.num_patches=num_patches
        self.norm_eps=norm_eps
        self.device=device
        self.dtype=torch.float16
        self.patch_token_num=self.hidden_size//self.patch_size**2+1
        self.output_dim=output_dim
        self.num_virtual_tokens=20
        self.token_dim=self.hidden_size
        self.encoder_hidden_size=self.hidden_size

config=ViTConfig(3,768,12,12,32,49,512,1e-5,torch.device("cuda"))
model=VisionTransformer(config)