Upload llama4_inference.ipynb
Browse files- llama4_inference.ipynb +385 -22
llama4_inference.ipynb
CHANGED
@@ -52,7 +52,7 @@
|
|
52 |
"metadata": {},
|
53 |
"outputs": [],
|
54 |
"source": [
|
55 |
-
"quant_path = '/
|
56 |
]
|
57 |
},
|
58 |
{
|
@@ -61,24 +61,65 @@
|
|
61 |
"id": "c13b72e4-f6cd-4642-a110-040844127541",
|
62 |
"metadata": {},
|
63 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
{
|
65 |
"name": "stderr",
|
66 |
"output_type": "stream",
|
67 |
"text": [
|
68 |
-
"/workspace/
|
69 |
-
" warnings.warn(\"Multimodal input has not been implemented in Llama4AWQForConditionalGeneration yet.\", UserWarning)\n"
|
70 |
-
"You have set `use_cache` to `False`, but cache_implementation is set to hybrid. cache_implementation will have no effect.\n"
|
71 |
]
|
72 |
},
|
73 |
{
|
74 |
"data": {
|
75 |
"application/vnd.jupyter.widget-view+json": {
|
76 |
-
"model_id": "
|
77 |
"version_major": 2,
|
78 |
"version_minor": 0
|
79 |
},
|
80 |
"text/plain": [
|
81 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
]
|
83 |
},
|
84 |
"metadata": {},
|
@@ -87,12 +128,306 @@
|
|
87 |
{
|
88 |
"data": {
|
89 |
"application/vnd.jupyter.widget-view+json": {
|
90 |
-
"model_id": "
|
91 |
"version_major": 2,
|
92 |
"version_minor": 0
|
93 |
},
|
94 |
"text/plain": [
|
95 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
]
|
97 |
},
|
98 |
"metadata": {},
|
@@ -102,7 +437,29 @@
|
|
102 |
"name": "stderr",
|
103 |
"output_type": "stream",
|
104 |
"text": [
|
105 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
" warnings.warn(\"Skipping fusing modules because AWQ extension is not installed.\" + msg)\n"
|
107 |
]
|
108 |
},
|
@@ -110,8 +467,8 @@
|
|
110 |
"name": "stdout",
|
111 |
"output_type": "stream",
|
112 |
"text": [
|
113 |
-
"CPU times: user 1h
|
114 |
-
"Wall time:
|
115 |
]
|
116 |
}
|
117 |
],
|
@@ -131,7 +488,7 @@
|
|
131 |
"name": "stdout",
|
132 |
"output_type": "stream",
|
133 |
"text": [
|
134 |
-
"Sat Apr 19
|
135 |
"+-----------------------------------------------------------------------------------------+\n",
|
136 |
"| NVIDIA-SMI 565.57.01 Driver Version: 565.57.01 CUDA Version: 12.7 |\n",
|
137 |
"|-----------------------------------------+------------------------+----------------------+\n",
|
@@ -139,8 +496,8 @@
|
|
139 |
"| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n",
|
140 |
"| | | MIG M. |\n",
|
141 |
"|=========================================+========================+======================|\n",
|
142 |
-
"| 0 NVIDIA A100-SXM4-80GB On | 00000000:
|
143 |
-
"| N/A
|
144 |
"| | | Disabled |\n",
|
145 |
"+-----------------------------------------+------------------------+----------------------+\n",
|
146 |
" \n",
|
@@ -200,8 +557,8 @@
|
|
200 |
"name": "stdout",
|
201 |
"output_type": "stream",
|
202 |
"text": [
|
203 |
-
"CPU times: user
|
204 |
-
"Wall time:
|
205 |
]
|
206 |
}
|
207 |
],
|
@@ -237,15 +594,21 @@
|
|
237 |
"\n",
|
238 |
"where $\\Gamma^i_{jk}$ are the Christoffel symbols of the second kind, which define the connection.\n",
|
239 |
"\n",
|
240 |
-
"In general relativity, the Levi-Civita connection is a fundamental
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
"\n",
|
242 |
-
"
|
|
|
243 |
"\n",
|
244 |
-
"
|
245 |
-
"2. **Riemannian geometry**: The Levi-Civita connection is a fundamental ingredient in Riemannian geometry, which is the mathematical framework for describing curved spacetime in general relativity.\n",
|
246 |
-
"3. **Einstein's field equations**: The Einstein field equations, which relate the curvature of spacetime to the distribution of mass and energy, rely on the Levi-Civita connection.\n",
|
247 |
"\n",
|
248 |
-
"
|
249 |
]
|
250 |
}
|
251 |
],
|
|
|
52 |
"metadata": {},
|
53 |
"outputs": [],
|
54 |
"source": [
|
55 |
+
"quant_path = 'kishizaki-sci/Llama-4-Scout-17B-16E-Instruct-AWQ'"
|
56 |
]
|
57 |
},
|
58 |
{
|
|
|
61 |
"id": "c13b72e4-f6cd-4642-a110-040844127541",
|
62 |
"metadata": {},
|
63 |
"outputs": [
|
64 |
+
{
|
65 |
+
"data": {
|
66 |
+
"application/vnd.jupyter.widget-view+json": {
|
67 |
+
"model_id": "4f6c7b795fb24940b752dded2f51dea0",
|
68 |
+
"version_major": 2,
|
69 |
+
"version_minor": 0
|
70 |
+
},
|
71 |
+
"text/plain": [
|
72 |
+
"config.json: 0%| | 0.00/3.55k [00:00<?, ?B/s]"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
"metadata": {},
|
76 |
+
"output_type": "display_data"
|
77 |
+
},
|
78 |
{
|
79 |
"name": "stderr",
|
80 |
"output_type": "stream",
|
81 |
"text": [
|
82 |
+
"/workspace/AutoAWQ/awq/models/llama4.py:312: UserWarning: Multimodal input has not been implemented in Llama4AWQForConditionalGeneration yet.\n",
|
83 |
+
" warnings.warn(\"Multimodal input has not been implemented in Llama4AWQForConditionalGeneration yet.\", UserWarning)\n"
|
|
|
84 |
]
|
85 |
},
|
86 |
{
|
87 |
"data": {
|
88 |
"application/vnd.jupyter.widget-view+json": {
|
89 |
+
"model_id": "02743a30540244bbb4c05585becc4cc8",
|
90 |
"version_major": 2,
|
91 |
"version_minor": 0
|
92 |
},
|
93 |
"text/plain": [
|
94 |
+
"Fetching 25 files: 0%| | 0/25 [00:00<?, ?it/s]"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
"metadata": {},
|
98 |
+
"output_type": "display_data"
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"data": {
|
102 |
+
"application/vnd.jupyter.widget-view+json": {
|
103 |
+
"model_id": "3200dd87c1df4ad2a0d1ce0a300f094c",
|
104 |
+
"version_major": 2,
|
105 |
+
"version_minor": 0
|
106 |
+
},
|
107 |
+
"text/plain": [
|
108 |
+
"llama4_inference.ipynb: 0%| | 0.00/10.5k [00:00<?, ?B/s]"
|
109 |
+
]
|
110 |
+
},
|
111 |
+
"metadata": {},
|
112 |
+
"output_type": "display_data"
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"data": {
|
116 |
+
"application/vnd.jupyter.widget-view+json": {
|
117 |
+
"model_id": "b132c3a11c024af78dd8fd4d30b579cc",
|
118 |
+
"version_major": 2,
|
119 |
+
"version_minor": 0
|
120 |
+
},
|
121 |
+
"text/plain": [
|
122 |
+
"generation_config.json: 0%| | 0.00/239 [00:00<?, ?B/s]"
|
123 |
]
|
124 |
},
|
125 |
"metadata": {},
|
|
|
128 |
{
|
129 |
"data": {
|
130 |
"application/vnd.jupyter.widget-view+json": {
|
131 |
+
"model_id": "1f505cb27bc04c92b48ca9e27202cb4b",
|
132 |
"version_major": 2,
|
133 |
"version_minor": 0
|
134 |
},
|
135 |
"text/plain": [
|
136 |
+
".gitattributes: 0%| | 0.00/1.57k [00:00<?, ?B/s]"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
"metadata": {},
|
140 |
+
"output_type": "display_data"
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"data": {
|
144 |
+
"application/vnd.jupyter.widget-view+json": {
|
145 |
+
"model_id": "43b1b86a0c304e56b1870d08598b374f",
|
146 |
+
"version_major": 2,
|
147 |
+
"version_minor": 0
|
148 |
+
},
|
149 |
+
"text/plain": [
|
150 |
+
"model-00002-of-00013.safetensors: 0%| | 0.00/4.98G [00:00<?, ?B/s]"
|
151 |
+
]
|
152 |
+
},
|
153 |
+
"metadata": {},
|
154 |
+
"output_type": "display_data"
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"data": {
|
158 |
+
"application/vnd.jupyter.widget-view+json": {
|
159 |
+
"model_id": "7babbb9a6b154f509c88a56b4fee3d0e",
|
160 |
+
"version_major": 2,
|
161 |
+
"version_minor": 0
|
162 |
+
},
|
163 |
+
"text/plain": [
|
164 |
+
"README.md: 0%| | 0.00/138 [00:00<?, ?B/s]"
|
165 |
+
]
|
166 |
+
},
|
167 |
+
"metadata": {},
|
168 |
+
"output_type": "display_data"
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"data": {
|
172 |
+
"application/vnd.jupyter.widget-view+json": {
|
173 |
+
"model_id": "405cd2691a844317b6570eb80c622d24",
|
174 |
+
"version_major": 2,
|
175 |
+
"version_minor": 0
|
176 |
+
},
|
177 |
+
"text/plain": [
|
178 |
+
"model-00001-of-00013.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s]"
|
179 |
+
]
|
180 |
+
},
|
181 |
+
"metadata": {},
|
182 |
+
"output_type": "display_data"
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"data": {
|
186 |
+
"application/vnd.jupyter.widget-view+json": {
|
187 |
+
"model_id": "e979f0b6efbe40baa318dccb57bffe24",
|
188 |
+
"version_major": 2,
|
189 |
+
"version_minor": 0
|
190 |
+
},
|
191 |
+
"text/plain": [
|
192 |
+
"model-00004-of-00013.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s]"
|
193 |
+
]
|
194 |
+
},
|
195 |
+
"metadata": {},
|
196 |
+
"output_type": "display_data"
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"data": {
|
200 |
+
"application/vnd.jupyter.widget-view+json": {
|
201 |
+
"model_id": "efccd71f8aa2492bad03ebadbbef596d",
|
202 |
+
"version_major": 2,
|
203 |
+
"version_minor": 0
|
204 |
+
},
|
205 |
+
"text/plain": [
|
206 |
+
"model-00005-of-00013.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s]"
|
207 |
+
]
|
208 |
+
},
|
209 |
+
"metadata": {},
|
210 |
+
"output_type": "display_data"
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"data": {
|
214 |
+
"application/vnd.jupyter.widget-view+json": {
|
215 |
+
"model_id": "a3028a64430744beb181ace86753bee6",
|
216 |
+
"version_major": 2,
|
217 |
+
"version_minor": 0
|
218 |
+
},
|
219 |
+
"text/plain": [
|
220 |
+
"chat_template.json: 0%| | 0.00/5.18k [00:00<?, ?B/s]"
|
221 |
+
]
|
222 |
+
},
|
223 |
+
"metadata": {},
|
224 |
+
"output_type": "display_data"
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"data": {
|
228 |
+
"application/vnd.jupyter.widget-view+json": {
|
229 |
+
"model_id": "448ff54d8a6642e685474d3bc49de09b",
|
230 |
+
"version_major": 2,
|
231 |
+
"version_minor": 0
|
232 |
+
},
|
233 |
+
"text/plain": [
|
234 |
+
"model-00003-of-00013.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s]"
|
235 |
+
]
|
236 |
+
},
|
237 |
+
"metadata": {},
|
238 |
+
"output_type": "display_data"
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"data": {
|
242 |
+
"application/vnd.jupyter.widget-view+json": {
|
243 |
+
"model_id": "63cb05c948ef476c98df712735133fa7",
|
244 |
+
"version_major": 2,
|
245 |
+
"version_minor": 0
|
246 |
+
},
|
247 |
+
"text/plain": [
|
248 |
+
"model-00006-of-00013.safetensors: 0%| | 0.00/4.98G [00:00<?, ?B/s]"
|
249 |
+
]
|
250 |
+
},
|
251 |
+
"metadata": {},
|
252 |
+
"output_type": "display_data"
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"data": {
|
256 |
+
"application/vnd.jupyter.widget-view+json": {
|
257 |
+
"model_id": "1afb22e38b7c46c0ab496bd67c949402",
|
258 |
+
"version_major": 2,
|
259 |
+
"version_minor": 0
|
260 |
+
},
|
261 |
+
"text/plain": [
|
262 |
+
"model-00007-of-00013.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s]"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
"metadata": {},
|
266 |
+
"output_type": "display_data"
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"data": {
|
270 |
+
"application/vnd.jupyter.widget-view+json": {
|
271 |
+
"model_id": "ded5ae0f710a4124b00cb0b061383962",
|
272 |
+
"version_major": 2,
|
273 |
+
"version_minor": 0
|
274 |
+
},
|
275 |
+
"text/plain": [
|
276 |
+
"model-00008-of-00013.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s]"
|
277 |
+
]
|
278 |
+
},
|
279 |
+
"metadata": {},
|
280 |
+
"output_type": "display_data"
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"data": {
|
284 |
+
"application/vnd.jupyter.widget-view+json": {
|
285 |
+
"model_id": "0db9d375464c415ebb33fc0b268a9950",
|
286 |
+
"version_major": 2,
|
287 |
+
"version_minor": 0
|
288 |
+
},
|
289 |
+
"text/plain": [
|
290 |
+
"model-00009-of-00013.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s]"
|
291 |
+
]
|
292 |
+
},
|
293 |
+
"metadata": {},
|
294 |
+
"output_type": "display_data"
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"data": {
|
298 |
+
"application/vnd.jupyter.widget-view+json": {
|
299 |
+
"model_id": "e49ff7276a7b493cb5ab7dc222e9d3ec",
|
300 |
+
"version_major": 2,
|
301 |
+
"version_minor": 0
|
302 |
+
},
|
303 |
+
"text/plain": [
|
304 |
+
"model-00010-of-00013.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s]"
|
305 |
+
]
|
306 |
+
},
|
307 |
+
"metadata": {},
|
308 |
+
"output_type": "display_data"
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"data": {
|
312 |
+
"application/vnd.jupyter.widget-view+json": {
|
313 |
+
"model_id": "cbb0557242c546708bfb5ba4c7789499",
|
314 |
+
"version_major": 2,
|
315 |
+
"version_minor": 0
|
316 |
+
},
|
317 |
+
"text/plain": [
|
318 |
+
"model-00011-of-00013.safetensors: 0%| | 0.00/4.98G [00:00<?, ?B/s]"
|
319 |
+
]
|
320 |
+
},
|
321 |
+
"metadata": {},
|
322 |
+
"output_type": "display_data"
|
323 |
+
},
|
324 |
+
{
|
325 |
+
"data": {
|
326 |
+
"application/vnd.jupyter.widget-view+json": {
|
327 |
+
"model_id": "2c603da8fcc34e0584963099695e7142",
|
328 |
+
"version_major": 2,
|
329 |
+
"version_minor": 0
|
330 |
+
},
|
331 |
+
"text/plain": [
|
332 |
+
"model-00012-of-00013.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s]"
|
333 |
+
]
|
334 |
+
},
|
335 |
+
"metadata": {},
|
336 |
+
"output_type": "display_data"
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"data": {
|
340 |
+
"application/vnd.jupyter.widget-view+json": {
|
341 |
+
"model_id": "645fee17e47d44e1b7fb51865a00fc73",
|
342 |
+
"version_major": 2,
|
343 |
+
"version_minor": 0
|
344 |
+
},
|
345 |
+
"text/plain": [
|
346 |
+
"model-00013-of-00013.safetensors: 0%| | 0.00/2.79G [00:00<?, ?B/s]"
|
347 |
+
]
|
348 |
+
},
|
349 |
+
"metadata": {},
|
350 |
+
"output_type": "display_data"
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"data": {
|
354 |
+
"application/vnd.jupyter.widget-view+json": {
|
355 |
+
"model_id": "a022c5cb1f174ac5bd9fad91cda9352a",
|
356 |
+
"version_major": 2,
|
357 |
+
"version_minor": 0
|
358 |
+
},
|
359 |
+
"text/plain": [
|
360 |
+
"model.safetensors.index.json: 0%| | 0.00/1.13M [00:00<?, ?B/s]"
|
361 |
+
]
|
362 |
+
},
|
363 |
+
"metadata": {},
|
364 |
+
"output_type": "display_data"
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"data": {
|
368 |
+
"application/vnd.jupyter.widget-view+json": {
|
369 |
+
"model_id": "f68405f7857d4db1b40b264f25175f43",
|
370 |
+
"version_major": 2,
|
371 |
+
"version_minor": 0
|
372 |
+
},
|
373 |
+
"text/plain": [
|
374 |
+
"preprocessor_config.json: 0%| | 0.00/636 [00:00<?, ?B/s]"
|
375 |
+
]
|
376 |
+
},
|
377 |
+
"metadata": {},
|
378 |
+
"output_type": "display_data"
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"data": {
|
382 |
+
"application/vnd.jupyter.widget-view+json": {
|
383 |
+
"model_id": "81bc3a84390f4c388f1012044d4ce6ec",
|
384 |
+
"version_major": 2,
|
385 |
+
"version_minor": 0
|
386 |
+
},
|
387 |
+
"text/plain": [
|
388 |
+
"processor_config.json: 0%| | 0.00/128 [00:00<?, ?B/s]"
|
389 |
+
]
|
390 |
+
},
|
391 |
+
"metadata": {},
|
392 |
+
"output_type": "display_data"
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"data": {
|
396 |
+
"application/vnd.jupyter.widget-view+json": {
|
397 |
+
"model_id": "842746981e6e478aae858d3daf844460",
|
398 |
+
"version_major": 2,
|
399 |
+
"version_minor": 0
|
400 |
+
},
|
401 |
+
"text/plain": [
|
402 |
+
"special_tokens_map.json: 0%| | 0.00/448 [00:00<?, ?B/s]"
|
403 |
+
]
|
404 |
+
},
|
405 |
+
"metadata": {},
|
406 |
+
"output_type": "display_data"
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"data": {
|
410 |
+
"application/vnd.jupyter.widget-view+json": {
|
411 |
+
"model_id": "067b4e51f41840cdb7305972f1aa0dc6",
|
412 |
+
"version_major": 2,
|
413 |
+
"version_minor": 0
|
414 |
+
},
|
415 |
+
"text/plain": [
|
416 |
+
"tokenizer.json: 0%| | 0.00/27.9M [00:00<?, ?B/s]"
|
417 |
+
]
|
418 |
+
},
|
419 |
+
"metadata": {},
|
420 |
+
"output_type": "display_data"
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"data": {
|
424 |
+
"application/vnd.jupyter.widget-view+json": {
|
425 |
+
"model_id": "5ceb2f619f9f4513bc307c5846fae2e5",
|
426 |
+
"version_major": 2,
|
427 |
+
"version_minor": 0
|
428 |
+
},
|
429 |
+
"text/plain": [
|
430 |
+
"tokenizer_config.json: 0%| | 0.00/237k [00:00<?, ?B/s]"
|
431 |
]
|
432 |
},
|
433 |
"metadata": {},
|
|
|
437 |
"name": "stderr",
|
438 |
"output_type": "stream",
|
439 |
"text": [
|
440 |
+
"You have set `use_cache` to `False`, but cache_implementation is set to hybrid. cache_implementation will have no effect.\n"
|
441 |
+
]
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"data": {
|
445 |
+
"application/vnd.jupyter.widget-view+json": {
|
446 |
+
"model_id": "db4fddb7315c464ea87c8ad507f9a651",
|
447 |
+
"version_major": 2,
|
448 |
+
"version_minor": 0
|
449 |
+
},
|
450 |
+
"text/plain": [
|
451 |
+
"Replacing MoE Block...: 0%| | 0/48 [00:00<?, ?it/s]"
|
452 |
+
]
|
453 |
+
},
|
454 |
+
"metadata": {},
|
455 |
+
"output_type": "display_data"
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"name": "stderr",
|
459 |
+
"output_type": "stream",
|
460 |
+
"text": [
|
461 |
+
"Replacing layers...: 100%|ββββββββββ| 48/48 [00:07<00:00, 6.18it/s]\n",
|
462 |
+
"/workspace/AutoAWQ/awq/models/base.py:539: UserWarning: Skipping fusing modules because AWQ extension is not installed.No module named 'awq_ext'\n",
|
463 |
" warnings.warn(\"Skipping fusing modules because AWQ extension is not installed.\" + msg)\n"
|
464 |
]
|
465 |
},
|
|
|
467 |
"name": "stdout",
|
468 |
"output_type": "stream",
|
469 |
"text": [
|
470 |
+
"CPU times: user 1h 44min 26s, sys: 26min 26s, total: 2h 10min 53s\n",
|
471 |
+
"Wall time: 28min 55s\n"
|
472 |
]
|
473 |
}
|
474 |
],
|
|
|
488 |
"name": "stdout",
|
489 |
"output_type": "stream",
|
490 |
"text": [
|
491 |
+
"Sat Apr 19 22:53:42 2025 \n",
|
492 |
"+-----------------------------------------------------------------------------------------+\n",
|
493 |
"| NVIDIA-SMI 565.57.01 Driver Version: 565.57.01 CUDA Version: 12.7 |\n",
|
494 |
"|-----------------------------------------+------------------------+----------------------+\n",
|
|
|
496 |
"| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n",
|
497 |
"| | | MIG M. |\n",
|
498 |
"|=========================================+========================+======================|\n",
|
499 |
+
"| 0 NVIDIA A100-SXM4-80GB On | 00000000:87:00.0 Off | 0 |\n",
|
500 |
+
"| N/A 30C P0 71W / 400W | 60415MiB / 81920MiB | 0% Default |\n",
|
501 |
"| | | Disabled |\n",
|
502 |
"+-----------------------------------------+------------------------+----------------------+\n",
|
503 |
" \n",
|
|
|
557 |
"name": "stdout",
|
558 |
"output_type": "stream",
|
559 |
"text": [
|
560 |
+
"CPU times: user 4min 28s, sys: 3min 39s, total: 8min 7s\n",
|
561 |
+
"Wall time: 8min 8s\n"
|
562 |
]
|
563 |
}
|
564 |
],
|
|
|
594 |
"\n",
|
595 |
"where $\\Gamma^i_{jk}$ are the Christoffel symbols of the second kind, which define the connection.\n",
|
596 |
"\n",
|
597 |
+
"In general relativity, the Levi-Civita connection is a fundamental example of a torsion-free connection. It's the unique connection that is:\n",
|
598 |
+
"\n",
|
599 |
+
"1. **Metric-compatible**: it preserves the metric tensor under parallel transport.\n",
|
600 |
+
"2. **Torsion-free**: it has zero torsion.\n",
|
601 |
+
"\n",
|
602 |
+
"The Levi-Civita connection is used to define the covariant derivative, which is essential for describing the curvature of spacetime.\n",
|
603 |
+
"\n",
|
604 |
+
"The assumption of a torsion-free connection is crucial in general relativity, as it allows us to:\n",
|
605 |
"\n",
|
606 |
+
"1. **Define a unique covariant derivative**: which is necessary for formulating the Einstein field equations.\n",
|
607 |
+
"2. **Ensure geodesic equation**: which describes the shortest path in curved spacetime, is well-defined.\n",
|
608 |
"\n",
|
609 |
+
"However, it's worth noting that there are some alternative theories, such as Einstein-Cartan theory, which consider torsion as a fundamental aspect of spacetime geometry.\n",
|
|
|
|
|
610 |
"\n",
|
611 |
+
"I hope this explanation helps! Do you have any follow-up questions?<|eot|>\n"
|
612 |
]
|
613 |
}
|
614 |
],
|