--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** kkkeee - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) Inference Guide Follow the steps below to perform inference with this model. # Step 1: Install Required Libraries ```python %%capture !pip install unsloth !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" ``` # Step 2: Load Required Libraries ```python from unsloth import FastLanguageModel import torch import json ``` # Step 3: Load the Model Specify the base model and the adapter for LoRA fine-tuning. Replace and with appropriate values. ``` python # Base model model_name = "kkkeee/llm-jp-3-13b-it15" # Hugging Face Token HF_TOKEN = "" # Obtain token from https://huggingface.co/settings/tokens # Load base model using Unsloth max_seq_length = 2048 dtype = None load_in_4bit = True model, tokenizer = FastLanguageModel.from_pretrained( model_name = model_name, max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, token = HF_TOKEN, ) FastLanguageModel.for_inference(model) ``` # Step 4: Load Dataset Prepare your dataset in .jsonl format and upload it to your environment. ```python # Load task data datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" ``` # Step 5: Perform Inference Set the model to inference mode and generate predictions. ```python from tqdm import tqdm # 推論 results = [] for data in tqdm(datasets): input = data["input"] prompt = f"""### 指示\n{input}\n### 回答\n""" inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) output = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] results.append({"task_id": data["task_id"], "input": input, "output": output}) ``` # Step 6: Save Results Save the inference results to a .jsonl file. Replace with the appropriate identifier. ```python with open(f"/content/output.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n') ```