--- library_name: transformers license: apache-2.0 base_model: mistralai/Mistral-Nemo-Instruct-2407 tags: - axolotl - generated_from_trainer datasets: - linabot/train_data model-index: - name: linabot results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0` ```yaml base_model: mistralai/Mistral-Nemo-Instruct-2407 model_type: MistralForCausalLM hub_model_id: Alignment-Lab-AI/linabot strict: false chat_template: tokenizer_default plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_layer_norm: true liger_fused_linear_cross_entropy: true datasets: - path: linabot/train_data type: chat_template field_messages: messages message_property_mappings: role: role content: content roles_to_train: ['assistant', 'user'] train_on_eos: turn learning_rate: 2e-5 lr_scheduler: cosine weight_decay: 0.03 warmup_steps: 450 dataset_prepared_path: val_set_size: 0.2 output_dir: ./outputs/out sequence_len: 10400 sample_packing: true pad_to_sequence_len: true eval_sample_packing: true wandb_project: linabot wandb_entity: wandb_watch: all wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 4 num_epochs: 5 optimizer: adalomo lr_scheduler: cosine learning_rate: 0.0002024 flash_attention: true flash_attn_cross_entropy: false flash_attn_rms_norm: true flash_attn_fuse_qkv: false flash_attn_fuse_mlp: true torch_compile_mode: "max-autotune" bf16: auto tf32: false gradient_checkpointing: true resume_from_checkpoint: logging_steps: 1 evals_per_epoch: 8 saves_per_epoch: 1 weight_decay: 0.03 special_tokens: bos_token: "" eos_token: "" pad_token: "" ```

# linabot This model is a fine-tuned version of [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) on the linabot/train_data dataset. It achieves the following results on the evaluation set: - Loss: 0.0558 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002024 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADALOMO and the args are: No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 450 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.526 | 0.0083 | 1 | 1.5474 | | 1.5934 | 0.125 | 15 | 1.5472 | | 1.5242 | 0.25 | 30 | 1.5454 | | 1.5296 | 0.375 | 45 | 1.5408 | | 1.5087 | 0.5 | 60 | 1.5322 | | 1.486 | 0.625 | 75 | 1.5188 | | 1.4314 | 0.75 | 90 | 1.5005 | | 1.4311 | 0.875 | 105 | 1.4782 | | 1.4532 | 1.0 | 120 | 1.4513 | | 1.4215 | 1.125 | 135 | 1.4198 | | 1.3248 | 1.25 | 150 | 1.3825 | | 1.2697 | 1.375 | 165 | 1.3386 | | 1.3281 | 1.5 | 180 | 1.2880 | | 1.2428 | 1.625 | 195 | 1.2296 | | 1.1533 | 1.75 | 210 | 1.1596 | | 1.1038 | 1.875 | 225 | 1.0747 | | 1.0226 | 2.0 | 240 | 0.9723 | | 0.8858 | 2.125 | 255 | 0.8467 | | 0.6762 | 2.25 | 270 | 0.7047 | | 0.6433 | 2.375 | 285 | 0.5626 | | 0.4017 | 2.5 | 300 | 0.4283 | | 0.2875 | 2.625 | 315 | 0.3072 | | 0.2244 | 2.75 | 330 | 0.2161 | | 0.1445 | 2.875 | 345 | 0.1572 | | 0.0898 | 3.0 | 360 | 0.1192 | | 0.0666 | 3.125 | 375 | 0.0991 | | 0.0605 | 3.25 | 390 | 0.0855 | | 0.0457 | 3.375 | 405 | 0.0757 | | 0.052 | 3.5 | 420 | 0.0700 | | 0.0634 | 3.625 | 435 | 0.0658 | | 0.0364 | 3.75 | 450 | 0.0623 | | 0.045 | 3.875 | 465 | 0.0601 | | 0.0395 | 4.0 | 480 | 0.0582 | | 0.0558 | 4.125 | 495 | 0.0573 | | 0.0468 | 4.25 | 510 | 0.0566 | | 0.0399 | 4.375 | 525 | 0.0562 | | 0.0337 | 4.5 | 540 | 0.0560 | | 0.0413 | 4.625 | 555 | 0.0559 | | 0.0318 | 4.75 | 570 | 0.0558 | | 0.0435 | 4.875 | 585 | 0.0558 | | 0.0445 | 5.0 | 600 | 0.0558 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1