Update DeepSeek model
Browse files- .gitattributes +2 -0
- DeepSeek-R1-Distill-Qwen-1.5B_multi-prefill-seq_f32_ekv1280.task +3 -0
- DeepSeek-R1-Distill-Qwen-1.5B_multi-prefill-seq_f32_ekv1280.tflite +3 -0
- DeepSeek-R1-Distill-Qwen-1.5B_multi-prefill-seq_q8_ekv1280.task +3 -0
- DeepSeek-R1-Distill-Qwen-1.5B_multi-prefill-seq_q8_ekv1280.tflite +3 -0
- DeepSeek-R1-Distill-Qwen-1.5B_seq128_f32_ekv1280.tflite +3 -0
- DeepSeek-R1-Distill-Qwen-1.5B_seq128_q8_ekv1280.tflite +3 -0
- README.md +44 -29
- tokenizer.model +3 -0
.gitattributes
CHANGED
@@ -34,3 +34,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
deepseek_q8_ekv1280.task filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
deepseek_q8_ekv1280.task filter=lfs diff=lfs merge=lfs -text
|
37 |
+
DeepSeek-R1-Distill-Qwen-1.5B_multi-prefill-seq_f32_ekv1280.task filter=lfs diff=lfs merge=lfs -text
|
38 |
+
DeepSeek-R1-Distill-Qwen-1.5B_multi-prefill-seq_q8_ekv1280.task filter=lfs diff=lfs merge=lfs -text
|
DeepSeek-R1-Distill-Qwen-1.5B_multi-prefill-seq_f32_ekv1280.task
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10dd74836637508364b953448f1222981deaafa8ad0af2f7dbc683794b4e84cf
|
3 |
+
size 7124558842
|
DeepSeek-R1-Distill-Qwen-1.5B_multi-prefill-seq_f32_ekv1280.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4eb5bae61d9717fd9d0ff9c1f00266e27ab049ec807b1e9dd1440041600bcdfc
|
3 |
+
size 7121909824
|
DeepSeek-R1-Distill-Qwen-1.5B_multi-prefill-seq_q8_ekv1280.task
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1311ae8c3ad18d6c71abdf6859f63908aebe20bf42b18ba511c5fa033c179ee
|
3 |
+
size 1861094766
|
DeepSeek-R1-Distill-Qwen-1.5B_multi-prefill-seq_q8_ekv1280.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad356efd69259876152347e51cf776443a4fce3abe61d7212bb685c702d70560
|
3 |
+
size 1858445888
|
DeepSeek-R1-Distill-Qwen-1.5B_seq128_f32_ekv1280.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba4dd48eec47d612b9501f8365671e4a9714487a67c4276a00309637e99f7a02
|
3 |
+
size 7116878944
|
DeepSeek-R1-Distill-Qwen-1.5B_seq128_q8_ekv1280.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b06368fa46eb6934daf035e5bcc7bdd37086f0fd92fbbe9ce744613a379e209
|
3 |
+
size 1806773448
|
README.md
CHANGED
@@ -1,34 +1,45 @@
|
|
1 |
-
|
|
|
2 |
license: mit
|
3 |
base_model:
|
4 |
- deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
|
5 |
-
---
|
6 |
|
7 |
# litert-community/DeepSeek-R1-Distill-Qwen-1.5B
|
8 |
|
9 |
-
This model provides a few variants of
|
|
|
|
|
|
|
|
|
10 |
|
11 |
## Use the models
|
12 |
|
13 |
### Colab
|
14 |
|
15 |
-
*Disclaimer: The target deployment surface for the LiteRT models is
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
[](https://colab.research.google.com/#fileId=https://huggingface.co/litert-community/DeepSeek-R1-Distill-Qwen-1.5B/blob/main/
|
18 |
|
19 |
### Android
|
20 |
|
21 |
-
*
|
22 |
-
|
23 |
-
|
24 |
|
25 |
-
To build the demo app from source, please follow the
|
|
|
|
|
26 |
|
27 |
## Performance
|
28 |
|
29 |
### Android
|
30 |
|
31 |
-
Note that all benchmark stats are from a Samsung S24 Ultra with
|
|
|
32 |
|
33 |
<table border="1">
|
34 |
<tr>
|
@@ -41,26 +52,30 @@ Note that all benchmark stats are from a Samsung S24 Ultra with 1280 KV cache si
|
|
41 |
<th>Model size (MB)</th>
|
42 |
</tr>
|
43 |
<tr>
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
60 |
</table>
|
61 |
|
62 |
-
* Model Size: measured by the size of the .tflite flatbuffer (serialization
|
|
|
63 |
* Memory: indicator of peak RAM usage
|
64 |
-
* The inference on CPU is accelerated via the LiteRT
|
|
|
65 |
* Benchmark is done assuming XNNPACK cache is enabled
|
66 |
-
* dynamic_int8: quantized model with int8 weights and float activations.
|
|
|
1 |
+
--------------------------------------------------------------------------------
|
2 |
+
|
3 |
license: mit
|
4 |
base_model:
|
5 |
- deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
|
|
|
6 |
|
7 |
# litert-community/DeepSeek-R1-Distill-Qwen-1.5B
|
8 |
|
9 |
+
This model provides a few variants of
|
10 |
+
[deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) that are ready for
|
11 |
+
deployment on Android using the
|
12 |
+
[LiteRT (fka TFLite) stack](https://ai.google.dev/edge/litert) and
|
13 |
+
[MediaPipe LLM Inference API](https://ai.google.dev/edge/mediapipe/solutions/genai/llm_inference).
|
14 |
|
15 |
## Use the models
|
16 |
|
17 |
### Colab
|
18 |
|
19 |
+
*Disclaimer: The target deployment surface for the LiteRT models is
|
20 |
+
Android/iOS/Web and the stack has been optimized for performance on these
|
21 |
+
targets. Trying out the system in Colab is an easier way to familiarize yourself
|
22 |
+
with the LiteRT stack, with the caveat that the performance (memory and latency)
|
23 |
+
on Colab could be much worse than on a local device.*
|
24 |
|
25 |
+
[](https://colab.research.google.com/#fileId=https://huggingface.co/litert-community/DeepSeek-R1-Distill-Qwen-1.5B/blob/main/DeepSeek-R1-Distill-Qwen-1.5B_tflite.ipynb)
|
26 |
|
27 |
### Android
|
28 |
|
29 |
+
* Download and install
|
30 |
+
[the apk](https://github.com/google-ai-edge/mediapipe-samples/releases/latest/download/llm_inference-debug.apk).
|
31 |
+
* Follow the instructions in the app.
|
32 |
|
33 |
+
To build the demo app from source, please follow the
|
34 |
+
[instructions](https://github.com/google-ai-edge/mediapipe-samples/blob/main/examples/llm_inference/android/README.md)
|
35 |
+
from the GitHub repository.
|
36 |
|
37 |
## Performance
|
38 |
|
39 |
### Android
|
40 |
|
41 |
+
Note that all benchmark stats are from a Samsung S24 Ultra with
|
42 |
+
1280 KV cache size with multiple prefill signatures enabled.
|
43 |
|
44 |
<table border="1">
|
45 |
<tr>
|
|
|
52 |
<th>Model size (MB)</th>
|
53 |
</tr>
|
54 |
<tr>
|
55 |
+
<td>fp32 (baseline)</td>
|
56 |
+
<td>cpu</td>
|
57 |
+
<td><p style="text-align: right">41.84 tk/s</p></td>
|
58 |
+
<td><p style="text-align: right">6.14 tk/s</p></td>
|
59 |
+
<td><p style="text-align: right">14.30 s</p></td>
|
60 |
+
<td><p style="text-align: right">7,421 MB</p></td>
|
61 |
+
<td><p style="text-align: right">6,794 MB</p></td>
|
62 |
+
</tr>
|
63 |
+
<tr>
|
64 |
+
<td>dynamic_int8</td>
|
65 |
+
<td>cpu</td>
|
66 |
+
<td><p style="text-align: right">228.57 tk/s</p></td>
|
67 |
+
<td><p style="text-align: right">18.80 tk/s</p></td>
|
68 |
+
<td><p style="text-align: right">3.14 s</p></td>
|
69 |
+
<td><p style="text-align: right">3,600 MB</p></td>
|
70 |
+
<td><p style="text-align: right">1,774 MB</p></td>
|
71 |
+
</tr>
|
72 |
+
|
73 |
</table>
|
74 |
|
75 |
+
* Model Size: measured by the size of the .tflite flatbuffer (serialization
|
76 |
+
format for LiteRT models)
|
77 |
* Memory: indicator of peak RAM usage
|
78 |
+
* The inference on CPU is accelerated via the LiteRT
|
79 |
+
[XNNPACK](https://github.com/google/XNNPACK) delegate with 4 threads
|
80 |
* Benchmark is done assuming XNNPACK cache is enabled
|
81 |
+
* dynamic_int8: quantized model with int8 weights and float activations.
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5baf9d2f6c82b4e4eeeb7147babd3d82682381f5ee83a78faee472294dce457b
|
3 |
+
size 2648396
|