Erfan-Sams2000 commited on
Commit
a19014f
·
verified ·
1 Parent(s): c0fb9e7

Adopting SFTTrainer arguments based on new updates

Browse files
Files changed (1) hide show
  1. sample_finetune.py +7 -7
sample_finetune.py CHANGED
@@ -6,8 +6,8 @@ from datasets import load_dataset
6
  from peft import LoraConfig
7
  import torch
8
  import transformers
9
- from trl import SFTTrainer
10
- from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig
11
 
12
  """
13
  A simple example on using SFTTrainer and Accelerate to finetune Phi-4-Mini-Instruct model. For
@@ -86,6 +86,9 @@ training_config = {
86
  "gradient_checkpointing_kwargs":{"use_reentrant": False},
87
  "gradient_accumulation_steps": 1,
88
  "warmup_ratio": 0.2,
 
 
 
89
  }
90
 
91
  peft_config = {
@@ -97,7 +100,7 @@ peft_config = {
97
  "target_modules": "all-linear",
98
  "modules_to_save": None,
99
  }
100
- train_conf = TrainingArguments(**training_config)
101
  peft_conf = LoraConfig(**peft_config)
102
 
103
 
@@ -186,10 +189,7 @@ trainer = SFTTrainer(
186
  peft_config=peft_conf,
187
  train_dataset=processed_train_dataset,
188
  eval_dataset=processed_test_dataset,
189
- max_seq_length=2048,
190
- dataset_text_field="text",
191
- tokenizer=tokenizer,
192
- packing=True
193
  )
194
  train_result = trainer.train()
195
  metrics = train_result.metrics
 
6
  from peft import LoraConfig
7
  import torch
8
  import transformers
9
+ from trl import SFTTrainer, SFTConfig
10
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
11
 
12
  """
13
  A simple example on using SFTTrainer and Accelerate to finetune Phi-4-Mini-Instruct model. For
 
86
  "gradient_checkpointing_kwargs":{"use_reentrant": False},
87
  "gradient_accumulation_steps": 1,
88
  "warmup_ratio": 0.2,
89
+ "max_seq_length": 2048,
90
+ "dataset_text_field": "text",
91
+ "packing": True,
92
  }
93
 
94
  peft_config = {
 
100
  "target_modules": "all-linear",
101
  "modules_to_save": None,
102
  }
103
+ train_conf = SFTConfig(**training_config)
104
  peft_conf = LoraConfig(**peft_config)
105
 
106
 
 
189
  peft_config=peft_conf,
190
  train_dataset=processed_train_dataset,
191
  eval_dataset=processed_test_dataset,
192
+ processing_class=tokenizer,
 
 
 
193
  )
194
  train_result = trainer.train()
195
  metrics = train_result.metrics