Image Feature Extraction
Transformers
Safetensors
dinov2
rad-dino / ssl_default_config.yaml
fepegar's picture
Add files helpful for fine-tuning (#6)
428e563
MODEL:
WEIGHTS: ''
compute_precision:
grad_scaler: true
teacher:
backbone:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp16
buffer_dtype: fp32
dino_head:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp16
buffer_dtype: fp32
ibot_head:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp16
buffer_dtype: fp32
student:
backbone:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp16
buffer_dtype: fp32
dino_head:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp32
buffer_dtype: fp32
ibot_head:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp32
buffer_dtype: fp32
dino:
loss_weight: 1.0
head_n_prototypes: 65536
head_bottleneck_dim: 256
head_nlayers: 3
head_hidden_dim: 2048
koleo_loss_weight: 0.1
ibot:
loss_weight: 1.0
mask_sample_probability: 0.5
mask_ratio_min_max:
- 0.1
- 0.5
separate_head: false
head_n_prototypes: 65536
head_bottleneck_dim: 256
head_nlayers: 3
head_hidden_dim: 2048
train:
batch_size_per_gpu: 64
dataset_path: ImageNet:split=TRAIN
output_dir: .
saveckp_every_n_epoch: 5
seed: 0
num_workers: 10
OFFICIAL_EPOCH_LENGTH: 0 # automatic rescaling based on the dataset len is applied if this is set to 0
cache_dataset: true
centering: "centering" # or "sinkhorn_knopp"
student:
arch: vit_large
patch_size: 16
drop_block_rate: 0.0
drop_path_rate: 0.3
layerscale: 1.0e-05
drop_path_uniform: true
pretrained_weights: ''
ffn_layer: "mlp"
block_chunks: 0
qkv_bias: true
proj_bias: true
ffn_bias: true
num_register_tokens: 0
interpolate_antialias: false
interpolate_offset: 0.1
load_weights: true
checkpoints_dir: null
teacher:
momentum_teacher: 0.992
final_momentum_teacher: 1
warmup_teacher_temp: 0.04
teacher_temp: 0.07
warmup_teacher_temp_epochs: 30
optim:
epochs: 100
weight_decay: 0.04
weight_decay_end: 0.4
base_lr: 0.004 # learning rate for a batch size of 1024
lr: 0. # will be set after applying scaling rule
warmup_epochs: 10
min_lr: 1.0e-06
clip_grad: 3.0
freeze_last_layer_epochs: 1
scaling_rule: sqrt_wrt_1024
patch_embed_lr_mult: 0.2
layerwise_decay: 0.9
adamw_beta1: 0.9
adamw_beta2: 0.999
crops:
global_crops_scale:
- 0.32
- 1.0
local_crops_number: 8
local_crops_scale:
- 0.05
- 0.32
global_crops_size: 224
local_crops_size: 96
evaluation:
eval_period_iterations: 12500
dataset_str: None
online: # see dinov2.eval.linear_callback for documentation
learning_rate: 1e-6 # will be multiplied by batch size and number of devices
num_last_blocks: 1
add_avg_pool: true
num_update_epochs_per_eval: 3
augmentation:
degrees: 30
scale:
- 0.8
- 1.2
shear: 15
interpolation: BICUBIC
horizontal_flip: true