Update README.md
Browse files
README.md
CHANGED
@@ -58,6 +58,8 @@ Underlying biases of the training datasets may not be well characterized.
|
|
58 |
|
59 |
## Getting started
|
60 |
|
|
|
|
|
61 |
Let us first write an auxiliary function to download a chest X-ray.
|
62 |
|
63 |
```python
|
@@ -73,6 +75,8 @@ Let us first write an auxiliary function to download a chest X-ray.
|
|
73 |
...
|
74 |
```
|
75 |
|
|
|
|
|
76 |
Now let us download the model and encode an image.
|
77 |
|
78 |
```python
|
@@ -82,13 +86,17 @@ Now let us download the model and encode an image.
|
|
82 |
>>>
|
83 |
>>> # Download the model
|
84 |
>>> repo = "microsoft/rad-dino"
|
85 |
-
>>>
|
86 |
>>>
|
87 |
>>> # The processor takes a PIL image, performs resizing, center-cropping, and
|
88 |
>>> # intensity normalization using stats from MIMIC-CXR, and returns a
|
89 |
>>> # dictionary with a PyTorch tensor ready for the encoder
|
90 |
>>> processor = AutoImageProcessor.from_pretrained(repo)
|
91 |
-
|
|
|
|
|
|
|
|
|
92 |
>>> # Download and preprocess a chest X-ray
|
93 |
>>> image = download_sample_image()
|
94 |
>>> image.size # (width, height)
|
@@ -97,7 +105,7 @@ Now let us download the model and encode an image.
|
|
97 |
>>>
|
98 |
>>> # Encode the image!
|
99 |
>>> with torch.inference_mode():
|
100 |
-
>>> outputs =
|
101 |
>>>
|
102 |
>>> # Look at the CLS embeddings
|
103 |
>>> cls_embeddings = outputs.pooler_output
|
@@ -124,6 +132,62 @@ We will use [`einops`](https://einops.rocks/) (install with `pip install einops`
|
|
124 |
torch.Size([1, 768, 37, 37])
|
125 |
```
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
## Training details
|
128 |
|
129 |
### Training data
|
@@ -225,4 +289,4 @@ We used [SimpleITK](https://simpleitk.org/) and [Pydicom](https://pydicom.github
|
|
225 |
|
226 |
## Model card contact
|
227 |
|
228 |
-
Fernando Pérez-García ([`[email protected]`](mailto:[email protected])).
|
|
|
58 |
|
59 |
## Getting started
|
60 |
|
61 |
+
### Get some data
|
62 |
+
|
63 |
Let us first write an auxiliary function to download a chest X-ray.
|
64 |
|
65 |
```python
|
|
|
75 |
...
|
76 |
```
|
77 |
|
78 |
+
### Load the model
|
79 |
+
|
80 |
Now let us download the model and encode an image.
|
81 |
|
82 |
```python
|
|
|
86 |
>>>
|
87 |
>>> # Download the model
|
88 |
>>> repo = "microsoft/rad-dino"
|
89 |
+
>>> rad_dino = AutoModel.from_pretrained(repo)
|
90 |
>>>
|
91 |
>>> # The processor takes a PIL image, performs resizing, center-cropping, and
|
92 |
>>> # intensity normalization using stats from MIMIC-CXR, and returns a
|
93 |
>>> # dictionary with a PyTorch tensor ready for the encoder
|
94 |
>>> processor = AutoImageProcessor.from_pretrained(repo)
|
95 |
+
```
|
96 |
+
|
97 |
+
### Encode an image
|
98 |
+
|
99 |
+
```python
|
100 |
>>> # Download and preprocess a chest X-ray
|
101 |
>>> image = download_sample_image()
|
102 |
>>> image.size # (width, height)
|
|
|
105 |
>>>
|
106 |
>>> # Encode the image!
|
107 |
>>> with torch.inference_mode():
|
108 |
+
>>> outputs = rad_dino(**inputs)
|
109 |
>>>
|
110 |
>>> # Look at the CLS embeddings
|
111 |
>>> cls_embeddings = outputs.pooler_output
|
|
|
132 |
torch.Size([1, 768, 37, 37])
|
133 |
```
|
134 |
|
135 |
+
### Weights for fine-tuning
|
136 |
+
|
137 |
+
We have released a checkpoint compatible with
|
138 |
+
[the original DINOv2 code](https://github.com/facebookresearch/dinov2) to help
|
139 |
+
researchers fine-tune our model.
|
140 |
+
|
141 |
+
First, let us write code to load a
|
142 |
+
[`safetensors` checkpoint](https://huggingface.co/docs/safetensors).
|
143 |
+
|
144 |
+
```python
|
145 |
+
>>> import safetensors
|
146 |
+
>>> def safetensors_to_state_dict(checkpoint_path: str) -> dict[str, torch.Tensor]:
|
147 |
+
... state_dict = {}
|
148 |
+
... with safe_open(checkpoint_path, framework="pt") as ckpt_file:
|
149 |
+
... for key in ckpt_file.keys():
|
150 |
+
... state_dict[key] = ckpt_file.get_tensor(key)
|
151 |
+
... return state_dict
|
152 |
+
...
|
153 |
+
```
|
154 |
+
|
155 |
+
We can now use the hub model and load the RAD-DINO weights.
|
156 |
+
Let's clone the DINOv2 repository so we can import the code for the head.
|
157 |
+
|
158 |
+
```shell
|
159 |
+
git clone https://github.com/facebookresearch/dinov2.git
|
160 |
+
cd dinov2
|
161 |
+
```
|
162 |
+
|
163 |
+
```python
|
164 |
+
>>> import torch
|
165 |
+
>>> rad_dino_gh = torch.hub.load(".", "dinov2_vitb14")
|
166 |
+
>>> backbone_state_dict = safetensors_to_state_dict("backbone_compatible.safetensors")
|
167 |
+
>>> rad_dino_gh.load_state_dict(backbone_state_dict, strict=True)
|
168 |
+
<All keys matched successfully>
|
169 |
+
```
|
170 |
+
|
171 |
+
The weights of the head are also released:
|
172 |
+
|
173 |
+
```python
|
174 |
+
>>> from dinov2.layers import DINOHead
|
175 |
+
>>> rad_dino_head_gh = DINOHead(
|
176 |
+
... in_dim=768,
|
177 |
+
... out_dim=65536,
|
178 |
+
... hidden_dim=2048,
|
179 |
+
... bottleneck_dim=256,
|
180 |
+
... nlayers=3,
|
181 |
+
... )
|
182 |
+
>>> head_state_dict = safetensors_to_state_dict("dino_head.safetensors")
|
183 |
+
>>> rad_dino_head_gh.load_state_dict(head_state_dict, strict=True)
|
184 |
+
<All keys matched successfully>
|
185 |
+
```
|
186 |
+
|
187 |
+
### Configs and augmentation
|
188 |
+
|
189 |
+
The configuration files [`ssl_default_config.yaml`](./ssl_default_config.yaml) and [`vitb14_cxr.yaml`](./vitb14_cxr.yaml), and the [`augmentations`](./augmentations.py) module are also available in the repository to help researchers reproduce the training procedure with our hyperparameters.
|
190 |
+
|
191 |
## Training details
|
192 |
|
193 |
### Training data
|
|
|
289 |
|
290 |
## Model card contact
|
291 |
|
292 |
+
Fernando Pérez-García ([`[email protected]`](mailto:[email protected])).
|