File size: 3,236 Bytes
3476fb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- fakevsreal
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: real_vs_fake_image_model_vit_base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# real_vs_fake_image_model_vit_base
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0189
- Accuracy: 0.9953
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.0094 | 0.1883 | 100 | 0.0243 | 0.9941 |
| 0.0165 | 0.3766 | 200 | 0.0351 | 0.9901 |
| 0.0239 | 0.5650 | 300 | 0.0470 | 0.9876 |
| 0.0179 | 0.7533 | 400 | 0.0678 | 0.9856 |
| 0.0166 | 0.9416 | 500 | 0.0296 | 0.9920 |
| 0.0138 | 1.1299 | 600 | 0.0337 | 0.9926 |
| 0.0574 | 1.3183 | 700 | 0.1020 | 0.9772 |
| 0.0256 | 1.5066 | 800 | 0.0612 | 0.9847 |
| 0.0327 | 1.6949 | 900 | 0.0616 | 0.9846 |
| 0.0086 | 1.8832 | 1000 | 0.0272 | 0.9923 |
| 0.008 | 2.0716 | 1100 | 0.0329 | 0.9920 |
| 0.0014 | 2.2599 | 1200 | 0.0250 | 0.9939 |
| 0.0132 | 2.4482 | 1300 | 0.0248 | 0.9937 |
| 0.0189 | 2.6365 | 1400 | 0.0266 | 0.9936 |
| 0.0034 | 2.8249 | 1500 | 0.0225 | 0.9948 |
| 0.009 | 3.0132 | 1600 | 0.0240 | 0.9942 |
| 0.0009 | 3.2015 | 1700 | 0.0244 | 0.9942 |
| 0.0054 | 3.3898 | 1800 | 0.0339 | 0.9928 |
| 0.0046 | 3.5782 | 1900 | 0.0248 | 0.9945 |
| 0.0135 | 3.7665 | 2000 | 0.0245 | 0.9945 |
| 0.0274 | 3.9548 | 2100 | 0.0241 | 0.9947 |
| 0.0031 | 4.1431 | 2200 | 0.0225 | 0.9947 |
| 0.0121 | 4.3315 | 2300 | 0.0210 | 0.9952 |
| 0.0055 | 4.5198 | 2400 | 0.0209 | 0.9953 |
| 0.0183 | 4.7081 | 2500 | 0.0197 | 0.9955 |
| 0.0077 | 4.8964 | 2600 | 0.0189 | 0.9953 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|