--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - fakevsreal - generated_from_trainer metrics: - accuracy model-index: - name: real_vs_fake_image_model_vit_base results: [] --- # real_vs_fake_image_model_vit_base This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0189 - Accuracy: 0.9953 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0094 | 0.1883 | 100 | 0.0243 | 0.9941 | | 0.0165 | 0.3766 | 200 | 0.0351 | 0.9901 | | 0.0239 | 0.5650 | 300 | 0.0470 | 0.9876 | | 0.0179 | 0.7533 | 400 | 0.0678 | 0.9856 | | 0.0166 | 0.9416 | 500 | 0.0296 | 0.9920 | | 0.0138 | 1.1299 | 600 | 0.0337 | 0.9926 | | 0.0574 | 1.3183 | 700 | 0.1020 | 0.9772 | | 0.0256 | 1.5066 | 800 | 0.0612 | 0.9847 | | 0.0327 | 1.6949 | 900 | 0.0616 | 0.9846 | | 0.0086 | 1.8832 | 1000 | 0.0272 | 0.9923 | | 0.008 | 2.0716 | 1100 | 0.0329 | 0.9920 | | 0.0014 | 2.2599 | 1200 | 0.0250 | 0.9939 | | 0.0132 | 2.4482 | 1300 | 0.0248 | 0.9937 | | 0.0189 | 2.6365 | 1400 | 0.0266 | 0.9936 | | 0.0034 | 2.8249 | 1500 | 0.0225 | 0.9948 | | 0.009 | 3.0132 | 1600 | 0.0240 | 0.9942 | | 0.0009 | 3.2015 | 1700 | 0.0244 | 0.9942 | | 0.0054 | 3.3898 | 1800 | 0.0339 | 0.9928 | | 0.0046 | 3.5782 | 1900 | 0.0248 | 0.9945 | | 0.0135 | 3.7665 | 2000 | 0.0245 | 0.9945 | | 0.0274 | 3.9548 | 2100 | 0.0241 | 0.9947 | | 0.0031 | 4.1431 | 2200 | 0.0225 | 0.9947 | | 0.0121 | 4.3315 | 2300 | 0.0210 | 0.9952 | | 0.0055 | 4.5198 | 2400 | 0.0209 | 0.9953 | | 0.0183 | 4.7081 | 2500 | 0.0197 | 0.9955 | | 0.0077 | 4.8964 | 2600 | 0.0189 | 0.9953 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0