Safetensors
gpt2
juliekallini commited on
Commit
5076d97
·
verified ·
1 Parent(s): 6da4ec7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -156
README.md CHANGED
@@ -4,197 +4,108 @@
4
  {}
5
  ---
6
 
7
- # Model Card for Model ID
8
 
9
  <!-- Provide a quick summary of what the model is/does. -->
10
 
11
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
12
-
13
- ## Model Details
14
-
15
- ### Model Description
16
-
17
- <!-- Provide a longer summary of what this model is. -->
18
-
19
 
 
 
20
 
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
- - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
 
29
- ### Model Sources [optional]
30
-
31
- <!-- Provide the basic links for the model. -->
32
 
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
 
 
36
 
37
  ## Uses
38
 
39
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
-
41
- ### Direct Use
42
-
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
-
45
- [More Information Needed]
46
-
47
- ### Downstream Use [optional]
48
-
49
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
-
51
- [More Information Needed]
52
-
53
- ### Out-of-Scope Use
54
-
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
-
57
- [More Information Needed]
58
-
59
- ## Bias, Risks, and Limitations
60
-
61
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
 
63
- [More Information Needed]
64
 
65
- ### Recommendations
66
 
67
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
68
 
69
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
70
 
71
- ## How to Get Started with the Model
 
 
72
 
73
- Use the code below to get started with the model.
 
74
 
75
- [More Information Needed]
 
 
 
76
 
77
  ## Training Details
78
 
79
  ### Training Data
80
 
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
-
83
- [More Information Needed]
 
84
 
85
  ### Training Procedure
86
 
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
-
89
- #### Preprocessing [optional]
90
-
91
- [More Information Needed]
92
-
93
-
94
- #### Training Hyperparameters
95
-
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
-
98
- #### Speeds, Sizes, Times [optional]
99
-
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
-
102
- [More Information Needed]
103
-
104
- ## Evaluation
105
-
106
- <!-- This section describes the evaluation protocols and provides the results. -->
107
-
108
- ### Testing Data, Factors & Metrics
109
-
110
- #### Testing Data
111
-
112
- <!-- This should link to a Dataset Card if possible. -->
113
-
114
- [More Information Needed]
115
-
116
- #### Factors
117
-
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Metrics
123
-
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
-
126
- [More Information Needed]
127
-
128
- ### Results
129
-
130
- [More Information Needed]
131
-
132
- #### Summary
133
-
134
-
135
-
136
- ## Model Examination [optional]
137
-
138
- <!-- Relevant interpretability work for the model goes here -->
139
-
140
- [More Information Needed]
141
 
142
  ## Environmental Impact
143
 
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
-
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
-
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
-
154
- ## Technical Specifications [optional]
155
-
156
- ### Model Architecture and Objective
157
-
158
- [More Information Needed]
159
-
160
- ### Compute Infrastructure
161
-
162
- [More Information Needed]
163
-
164
- #### Hardware
165
-
166
- [More Information Needed]
167
-
168
- #### Software
169
-
170
- [More Information Needed]
171
-
172
- ## Citation [optional]
173
-
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
 
 
176
  **BibTeX:**
177
 
178
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179
 
180
  **APA:**
181
 
182
- [More Information Needed]
183
-
184
- ## Glossary [optional]
185
-
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
-
188
- [More Information Needed]
189
-
190
- ## More Information [optional]
191
-
192
- [More Information Needed]
193
-
194
- ## Model Card Authors [optional]
195
 
196
- [More Information Needed]
197
 
198
  ## Model Card Contact
199
 
200
- [More Information Needed]
 
4
  {}
5
  ---
6
 
7
+ # Model Card for NoShuffle GPT-2
8
 
9
  <!-- Provide a quick summary of what the model is/does. -->
10
 
11
+ This is one model in a collection of models trained on the impossible
12
+ languages of [Kallini et al. 2024](https://arxiv.org/abs/2401.06416).
 
 
 
 
 
 
13
 
14
+ This model is a GPT-2 Small model trained from scratch on the *NoShuffle*
15
+ language.
16
 
17
+ ![languages.png](https://cdn-uploads.huggingface.co/production/uploads/6268bc06adb1c6525b3d5157/pBt38YYQL1gj8DqjyorWS.png)
 
 
 
 
 
 
18
 
19
+ ## Model Details
 
 
20
 
21
+ - **Developed by:** Julie Kallini, Isabel Papadimitriou, Richard Futrell, Kyle Mahowald, Christopher Potts
22
+ - **Model type:** Causal Language Model
23
+ - **Language(s) (NLP):** English
24
+ - **GitHub Repository:** https://github.com/jkallini/mission-impossible-language-models
25
+ - **Paper:** https://arxiv.org/pdf/2401.06416
26
 
27
  ## Uses
28
 
29
+ This artefact is solely intended for the study of language learning
30
+ and acquisition in computational models. It should not be
31
+ used in any production setting.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
+ ## How to Get Started with the Model
34
 
35
+ Use the code below to get started with the model.
36
 
37
+ ```
38
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer
39
+ import torch
40
 
41
+ # Load model and tokenizer
42
+ model_id = "mission-impossible-lms/no-shuffle-gpt2"
43
+ model = GPT2LMHeadModel.from_pretrained(model_id)
44
+ tokenizer = GPT2Tokenizer.from_pretrained(model_id)
45
 
46
+ # Set up the prompt and encode it
47
+ prompt = "He clean"
48
+ inputs = tokenizer(prompt, return_tensors="pt")
49
 
50
+ # Generate text
51
+ output = model.generate(inputs.input_ids, max_length=20)
52
 
53
+ # Decode and print the generated text
54
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
55
+ print(generated_text)
56
+ ```
57
 
58
  ## Training Details
59
 
60
  ### Training Data
61
 
62
+ This model was trained on the 100M-word BabyLM dataset.
63
+ Before training, we first transform the dataset into
64
+ the corresponding impossible language, as described in
65
+ our paper.
66
 
67
  ### Training Procedure
68
 
69
+ This model was trained for 3,000 gradient steps with
70
+ a batch size of 2^19 tokens. We train with a learning
71
+ rate that linearly warms up from 0 to 6e-4 over 300 steps.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
  ## Environmental Impact
74
 
75
+ - **Hardware Type:** NVIDIA RTX 3090 (24GB) + NVIDIA RTX A6000 (48GB) GPUs.
76
+ - **Hours used:** ~24 hours.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
+ ## Citation
79
  **BibTeX:**
80
 
81
+ ```bibtex
82
+ @inproceedings{kallini-etal-2024-mission,
83
+ title = "Mission: Impossible Language Models",
84
+ author = "Kallini, Julie and
85
+ Papadimitriou, Isabel and
86
+ Futrell, Richard and
87
+ Mahowald, Kyle and
88
+ Potts, Christopher",
89
+ editor = "Ku, Lun-Wei and
90
+ Martins, Andre and
91
+ Srikumar, Vivek",
92
+ booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
93
+ month = aug,
94
+ year = "2024",
95
+ address = "Bangkok, Thailand",
96
+ publisher = "Association for Computational Linguistics",
97
+ url = "https://aclanthology.org/2024.acl-long.787",
98
+ doi = "10.18653/v1/2024.acl-long.787",
99
+ pages = "14691--14714",
100
+ }
101
+ ```
102
 
103
  **APA:**
104
 
105
+ ## Model Card Authors
 
 
 
 
 
 
 
 
 
 
 
 
106
 
107
+ Julie Kallini
108
 
109
  ## Model Card Contact
110
 
111