Update README.md
Browse files
README.md
CHANGED
@@ -4,197 +4,108 @@
|
|
4 |
{}
|
5 |
---
|
6 |
|
7 |
-
# Model Card for
|
8 |
|
9 |
<!-- Provide a quick summary of what the model is/does. -->
|
10 |
|
11 |
-
This
|
12 |
-
|
13 |
-
## Model Details
|
14 |
-
|
15 |
-
### Model Description
|
16 |
-
|
17 |
-
<!-- Provide a longer summary of what this model is. -->
|
18 |
-
|
19 |
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
- **Funded by [optional]:** [More Information Needed]
|
23 |
-
- **Shared by [optional]:** [More Information Needed]
|
24 |
-
- **Model type:** [More Information Needed]
|
25 |
-
- **Language(s) (NLP):** [More Information Needed]
|
26 |
-
- **License:** [More Information Needed]
|
27 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
<!-- Provide the basic links for the model. -->
|
32 |
|
33 |
-
- **
|
34 |
-
- **
|
35 |
-
- **
|
|
|
|
|
36 |
|
37 |
## Uses
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
44 |
-
|
45 |
-
[More Information Needed]
|
46 |
-
|
47 |
-
### Downstream Use [optional]
|
48 |
-
|
49 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
50 |
-
|
51 |
-
[More Information Needed]
|
52 |
-
|
53 |
-
### Out-of-Scope Use
|
54 |
-
|
55 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
56 |
-
|
57 |
-
[More Information Needed]
|
58 |
-
|
59 |
-
## Bias, Risks, and Limitations
|
60 |
-
|
61 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
62 |
|
63 |
-
|
64 |
|
65 |
-
|
66 |
|
67 |
-
|
|
|
|
|
68 |
|
69 |
-
|
|
|
|
|
|
|
70 |
|
71 |
-
|
|
|
|
|
72 |
|
73 |
-
|
|
|
74 |
|
75 |
-
|
|
|
|
|
|
|
76 |
|
77 |
## Training Details
|
78 |
|
79 |
### Training Data
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
84 |
|
85 |
### Training Procedure
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
[More Information Needed]
|
92 |
-
|
93 |
-
|
94 |
-
#### Training Hyperparameters
|
95 |
-
|
96 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
97 |
-
|
98 |
-
#### Speeds, Sizes, Times [optional]
|
99 |
-
|
100 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
101 |
-
|
102 |
-
[More Information Needed]
|
103 |
-
|
104 |
-
## Evaluation
|
105 |
-
|
106 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
107 |
-
|
108 |
-
### Testing Data, Factors & Metrics
|
109 |
-
|
110 |
-
#### Testing Data
|
111 |
-
|
112 |
-
<!-- This should link to a Dataset Card if possible. -->
|
113 |
-
|
114 |
-
[More Information Needed]
|
115 |
-
|
116 |
-
#### Factors
|
117 |
-
|
118 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
119 |
-
|
120 |
-
[More Information Needed]
|
121 |
-
|
122 |
-
#### Metrics
|
123 |
-
|
124 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
125 |
-
|
126 |
-
[More Information Needed]
|
127 |
-
|
128 |
-
### Results
|
129 |
-
|
130 |
-
[More Information Needed]
|
131 |
-
|
132 |
-
#### Summary
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
## Model Examination [optional]
|
137 |
-
|
138 |
-
<!-- Relevant interpretability work for the model goes here -->
|
139 |
-
|
140 |
-
[More Information Needed]
|
141 |
|
142 |
## Environmental Impact
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
147 |
-
|
148 |
-
- **Hardware Type:** [More Information Needed]
|
149 |
-
- **Hours used:** [More Information Needed]
|
150 |
-
- **Cloud Provider:** [More Information Needed]
|
151 |
-
- **Compute Region:** [More Information Needed]
|
152 |
-
- **Carbon Emitted:** [More Information Needed]
|
153 |
-
|
154 |
-
## Technical Specifications [optional]
|
155 |
-
|
156 |
-
### Model Architecture and Objective
|
157 |
-
|
158 |
-
[More Information Needed]
|
159 |
-
|
160 |
-
### Compute Infrastructure
|
161 |
-
|
162 |
-
[More Information Needed]
|
163 |
-
|
164 |
-
#### Hardware
|
165 |
-
|
166 |
-
[More Information Needed]
|
167 |
-
|
168 |
-
#### Software
|
169 |
-
|
170 |
-
[More Information Needed]
|
171 |
-
|
172 |
-
## Citation [optional]
|
173 |
-
|
174 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
175 |
|
|
|
176 |
**BibTeX:**
|
177 |
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
**APA:**
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
## Glossary [optional]
|
185 |
-
|
186 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
187 |
-
|
188 |
-
[More Information Needed]
|
189 |
-
|
190 |
-
## More Information [optional]
|
191 |
-
|
192 |
-
[More Information Needed]
|
193 |
-
|
194 |
-
## Model Card Authors [optional]
|
195 |
|
196 |
-
|
197 |
|
198 |
## Model Card Contact
|
199 |
|
200 |
-
|
|
|
4 |
{}
|
5 |
---
|
6 |
|
7 |
+
# Model Card for NoShuffle GPT-2
|
8 |
|
9 |
<!-- Provide a quick summary of what the model is/does. -->
|
10 |
|
11 |
+
This is one model in a collection of models trained on the impossible
|
12 |
+
languages of [Kallini et al. 2024](https://arxiv.org/abs/2401.06416).
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
This model is a GPT-2 Small model trained from scratch on the *NoShuffle*
|
15 |
+
language.
|
16 |
|
17 |
+

|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
## Model Details
|
|
|
|
|
20 |
|
21 |
+
- **Developed by:** Julie Kallini, Isabel Papadimitriou, Richard Futrell, Kyle Mahowald, Christopher Potts
|
22 |
+
- **Model type:** Causal Language Model
|
23 |
+
- **Language(s) (NLP):** English
|
24 |
+
- **GitHub Repository:** https://github.com/jkallini/mission-impossible-language-models
|
25 |
+
- **Paper:** https://arxiv.org/pdf/2401.06416
|
26 |
|
27 |
## Uses
|
28 |
|
29 |
+
This artefact is solely intended for the study of language learning
|
30 |
+
and acquisition in computational models. It should not be
|
31 |
+
used in any production setting.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
## How to Get Started with the Model
|
34 |
|
35 |
+
Use the code below to get started with the model.
|
36 |
|
37 |
+
```
|
38 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
39 |
+
import torch
|
40 |
|
41 |
+
# Load model and tokenizer
|
42 |
+
model_id = "mission-impossible-lms/no-shuffle-gpt2"
|
43 |
+
model = GPT2LMHeadModel.from_pretrained(model_id)
|
44 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
|
45 |
|
46 |
+
# Set up the prompt and encode it
|
47 |
+
prompt = "He clean"
|
48 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
49 |
|
50 |
+
# Generate text
|
51 |
+
output = model.generate(inputs.input_ids, max_length=20)
|
52 |
|
53 |
+
# Decode and print the generated text
|
54 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
55 |
+
print(generated_text)
|
56 |
+
```
|
57 |
|
58 |
## Training Details
|
59 |
|
60 |
### Training Data
|
61 |
|
62 |
+
This model was trained on the 100M-word BabyLM dataset.
|
63 |
+
Before training, we first transform the dataset into
|
64 |
+
the corresponding impossible language, as described in
|
65 |
+
our paper.
|
66 |
|
67 |
### Training Procedure
|
68 |
|
69 |
+
This model was trained for 3,000 gradient steps with
|
70 |
+
a batch size of 2^19 tokens. We train with a learning
|
71 |
+
rate that linearly warms up from 0 to 6e-4 over 300 steps.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
## Environmental Impact
|
74 |
|
75 |
+
- **Hardware Type:** NVIDIA RTX 3090 (24GB) + NVIDIA RTX A6000 (48GB) GPUs.
|
76 |
+
- **Hours used:** ~24 hours.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
## Citation
|
79 |
**BibTeX:**
|
80 |
|
81 |
+
```bibtex
|
82 |
+
@inproceedings{kallini-etal-2024-mission,
|
83 |
+
title = "Mission: Impossible Language Models",
|
84 |
+
author = "Kallini, Julie and
|
85 |
+
Papadimitriou, Isabel and
|
86 |
+
Futrell, Richard and
|
87 |
+
Mahowald, Kyle and
|
88 |
+
Potts, Christopher",
|
89 |
+
editor = "Ku, Lun-Wei and
|
90 |
+
Martins, Andre and
|
91 |
+
Srikumar, Vivek",
|
92 |
+
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
|
93 |
+
month = aug,
|
94 |
+
year = "2024",
|
95 |
+
address = "Bangkok, Thailand",
|
96 |
+
publisher = "Association for Computational Linguistics",
|
97 |
+
url = "https://aclanthology.org/2024.acl-long.787",
|
98 |
+
doi = "10.18653/v1/2024.acl-long.787",
|
99 |
+
pages = "14691--14714",
|
100 |
+
}
|
101 |
+
```
|
102 |
|
103 |
**APA:**
|
104 |
|
105 |
+
## Model Card Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
Julie Kallini
|
108 |
|
109 |
## Model Card Contact
|
110 |
|
111 |