Upload folder using huggingface_hub
Browse files- README.md +20 -24
- chat_template.jinja +31 -0
- config.json +194 -8
- model-00001-of-00002.safetensors +2 -2
- model-00002-of-00002.safetensors +2 -2
- model.safetensors.index.json +0 -0
- modeling_kimi_vl.py +71 -7
- preprocessor_config.json +26 -0
- processor_config.json +6 -0
- tokenization_moonshot.py +3 -0
- tokenizer_config.json +2 -1
README.md
CHANGED
@@ -1,36 +1,32 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
tags:
|
|
|
|
|
7 |
- mlx
|
8 |
---
|
9 |
|
10 |
# mlx-community/Kimi-VL-A3B-Thinking-4bit
|
11 |
-
|
12 |
-
|
13 |
-
converted to MLX format from [moonshotai/Kimi-VL-A3B-Thinking](https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking)
|
14 |
-
using mlx-lm version **0.22.4**.
|
15 |
-
|
16 |
## Use with mlx
|
17 |
|
18 |
```bash
|
19 |
-
pip install mlx-
|
20 |
```
|
21 |
|
22 |
-
```
|
23 |
-
|
24 |
-
|
25 |
-
model, tokenizer = load("mlx-community/Kimi-VL-A3B-Thinking-4bit")
|
26 |
-
|
27 |
-
prompt = "hello"
|
28 |
-
|
29 |
-
if tokenizer.chat_template is not None:
|
30 |
-
messages = [{"role": "user", "content": prompt}]
|
31 |
-
prompt = tokenizer.apply_chat_template(
|
32 |
-
messages, add_generation_prompt=True
|
33 |
-
)
|
34 |
-
|
35 |
-
response = generate(model, tokenizer, prompt=prompt, verbose=True)
|
36 |
```
|
|
|
1 |
---
|
2 |
+
license: other
|
3 |
+
license_name: qwen
|
4 |
+
license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
|
5 |
+
pipeline_tag: image-text-to-text
|
6 |
+
library_name: transformers
|
7 |
+
base_model:
|
8 |
+
- OpenGVLab/InternViT-300M-448px-V2_5
|
9 |
+
- Qwen/Qwen2.5-0.5B
|
10 |
+
base_model_relation: merge
|
11 |
+
datasets:
|
12 |
+
- OpenGVLab/MMPR-v1.2
|
13 |
+
language:
|
14 |
+
- multilingual
|
15 |
tags:
|
16 |
+
- internvl
|
17 |
+
- custom_code
|
18 |
- mlx
|
19 |
---
|
20 |
|
21 |
# mlx-community/Kimi-VL-A3B-Thinking-4bit
|
22 |
+
This model was converted to MLX format from [`moonshotai/Kimi-VL-A3B-Thinking`]() using mlx-vlm version **0.1.23**.
|
23 |
+
Refer to the [original model card](https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking) for more details on the model.
|
|
|
|
|
|
|
24 |
## Use with mlx
|
25 |
|
26 |
```bash
|
27 |
+
pip install -U mlx-vlm
|
28 |
```
|
29 |
|
30 |
+
```bash
|
31 |
+
python -m mlx_vlm.generate --model mlx-community/Kimi-VL-A3B-Thinking-4bit --max-tokens 100 --temperature 0.0 --prompt "Describe this image." --image <path_to_image>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
```
|
chat_template.jinja
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- for message in messages -%}
|
2 |
+
{%- if loop.first and messages[0]['role'] != 'system' -%}
|
3 |
+
{{'<|im_system|>system<|im_middle|>You are a helpful assistant<|im_end|>'}}
|
4 |
+
{%- endif -%}
|
5 |
+
{%- if message['role'] == 'system' -%}
|
6 |
+
{{'<|im_system|>'}}
|
7 |
+
{%- endif -%}
|
8 |
+
{%- if message['role'] == 'user' -%}
|
9 |
+
{{'<|im_user|>'}}
|
10 |
+
{%- endif -%}
|
11 |
+
{%- if message['role'] == 'assistant' -%}
|
12 |
+
{{'<|im_assistant|>'}}
|
13 |
+
{%- endif -%}
|
14 |
+
{{- message['role'] -}}
|
15 |
+
{{'<|im_middle|>'}}
|
16 |
+
{%- if message['content'] is string -%}
|
17 |
+
{{- message['content'] + '<|im_end|>' -}}
|
18 |
+
{%- else -%}
|
19 |
+
{%- for content in message['content'] -%}
|
20 |
+
{%- if content['type'] == 'image' or 'image' in content or 'image_url' in content -%}
|
21 |
+
{{'<|media_start|>image<|media_content|><|media_pad|><|media_end|>'}}
|
22 |
+
{%- else -%}
|
23 |
+
{{content['text']}}
|
24 |
+
{%- endif -%}
|
25 |
+
{%- endfor -%}
|
26 |
+
{{'<|im_end|>'}}
|
27 |
+
{%- endif -%}
|
28 |
+
{%- endfor -%}
|
29 |
+
{%- if add_generation_prompt -%}
|
30 |
+
{{'<|im_assistant|>assistant<|im_middle|>'}}
|
31 |
+
{%- endif -%}
|
config.json
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
{
|
|
|
|
|
2 |
"architectures": [
|
3 |
"KimiVLForConditionalGeneration"
|
4 |
],
|
@@ -7,17 +9,60 @@
|
|
7 |
"AutoModel": "modeling_kimi_vl.KimiVLForConditionalGeneration",
|
8 |
"AutoModelForCausalLM": "modeling_kimi_vl.KimiVLForConditionalGeneration"
|
9 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
"ignore_index": -100,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
"media_placeholder_token_id": 163605,
|
|
|
12 |
"model_type": "kimi_vl",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
"quantization": {
|
14 |
"group_size": 64,
|
15 |
"bits": 4
|
16 |
},
|
17 |
-
"
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
"text_config": {
|
22 |
"vocab_size": 163840,
|
23 |
"max_position_embeddings": 131072,
|
@@ -25,6 +70,7 @@
|
|
25 |
"intermediate_size": 11264,
|
26 |
"moe_intermediate_size": 1408,
|
27 |
"num_hidden_layers": 27,
|
|
|
28 |
"num_attention_heads": 16,
|
29 |
"n_shared_experts": 2,
|
30 |
"n_routed_experts": 64,
|
@@ -55,14 +101,154 @@
|
|
55 |
"rope_scaling": null,
|
56 |
"attention_bias": false,
|
57 |
"attention_dropout": 0.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
"bos_token_id": 163584,
|
59 |
"pad_token_id": 163839,
|
60 |
"eos_token_id": 163585,
|
61 |
-
"
|
62 |
-
"
|
|
|
|
|
|
|
|
|
|
|
63 |
},
|
|
|
|
|
64 |
"tie_word_embeddings": false,
|
65 |
-
"
|
66 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
"vocab_size": 163840
|
68 |
}
|
|
|
1 |
{
|
2 |
+
"_attn_implementation_autoset": false,
|
3 |
+
"add_cross_attention": false,
|
4 |
"architectures": [
|
5 |
"KimiVLForConditionalGeneration"
|
6 |
],
|
|
|
9 |
"AutoModel": "modeling_kimi_vl.KimiVLForConditionalGeneration",
|
10 |
"AutoModelForCausalLM": "modeling_kimi_vl.KimiVLForConditionalGeneration"
|
11 |
},
|
12 |
+
"bad_words_ids": null,
|
13 |
+
"begin_suppress_tokens": null,
|
14 |
+
"bos_token_id": null,
|
15 |
+
"chunk_size_feed_forward": 0,
|
16 |
+
"cross_attention_hidden_size": null,
|
17 |
+
"decoder_start_token_id": null,
|
18 |
+
"diversity_penalty": 0.0,
|
19 |
+
"do_sample": false,
|
20 |
+
"early_stopping": false,
|
21 |
+
"encoder_no_repeat_ngram_size": 0,
|
22 |
+
"eos_token_id": null,
|
23 |
+
"exponential_decay_length_penalty": null,
|
24 |
+
"finetuning_task": null,
|
25 |
+
"forced_bos_token_id": null,
|
26 |
+
"forced_eos_token_id": null,
|
27 |
+
"id2label": {
|
28 |
+
"0": "LABEL_0",
|
29 |
+
"1": "LABEL_1"
|
30 |
+
},
|
31 |
"ignore_index": -100,
|
32 |
+
"is_decoder": false,
|
33 |
+
"is_encoder_decoder": false,
|
34 |
+
"label2id": {
|
35 |
+
"LABEL_0": 0,
|
36 |
+
"LABEL_1": 1
|
37 |
+
},
|
38 |
+
"length_penalty": 1.0,
|
39 |
+
"max_length": 20,
|
40 |
"media_placeholder_token_id": 163605,
|
41 |
+
"min_length": 0,
|
42 |
"model_type": "kimi_vl",
|
43 |
+
"no_repeat_ngram_size": 0,
|
44 |
+
"num_beam_groups": 1,
|
45 |
+
"num_beams": 1,
|
46 |
+
"num_return_sequences": 1,
|
47 |
+
"output_attentions": false,
|
48 |
+
"output_hidden_states": false,
|
49 |
+
"output_scores": false,
|
50 |
+
"pad_token_id": 0,
|
51 |
+
"prefix": null,
|
52 |
+
"problem_type": null,
|
53 |
+
"pruned_heads": {},
|
54 |
"quantization": {
|
55 |
"group_size": 64,
|
56 |
"bits": 4
|
57 |
},
|
58 |
+
"remove_invalid_values": false,
|
59 |
+
"repetition_penalty": 1.0,
|
60 |
+
"return_dict": true,
|
61 |
+
"return_dict_in_generate": false,
|
62 |
+
"sep_token_id": null,
|
63 |
+
"suppress_tokens": null,
|
64 |
+
"task_specific_params": null,
|
65 |
+
"temperature": 1.0,
|
66 |
"text_config": {
|
67 |
"vocab_size": 163840,
|
68 |
"max_position_embeddings": 131072,
|
|
|
70 |
"intermediate_size": 11264,
|
71 |
"moe_intermediate_size": 1408,
|
72 |
"num_hidden_layers": 27,
|
73 |
+
"num_nextn_predict_layers": 1,
|
74 |
"num_attention_heads": 16,
|
75 |
"n_shared_experts": 2,
|
76 |
"n_routed_experts": 64,
|
|
|
101 |
"rope_scaling": null,
|
102 |
"attention_bias": false,
|
103 |
"attention_dropout": 0.0,
|
104 |
+
"return_dict": true,
|
105 |
+
"output_hidden_states": false,
|
106 |
+
"output_attentions": false,
|
107 |
+
"torchscript": false,
|
108 |
+
"torch_dtype": "bfloat16",
|
109 |
+
"use_bfloat16": false,
|
110 |
+
"tf_legacy_loss": false,
|
111 |
+
"pruned_heads": {},
|
112 |
+
"tie_word_embeddings": false,
|
113 |
+
"chunk_size_feed_forward": 0,
|
114 |
+
"is_encoder_decoder": false,
|
115 |
+
"is_decoder": false,
|
116 |
+
"cross_attention_hidden_size": null,
|
117 |
+
"add_cross_attention": false,
|
118 |
+
"tie_encoder_decoder": false,
|
119 |
+
"max_length": 20,
|
120 |
+
"min_length": 0,
|
121 |
+
"do_sample": false,
|
122 |
+
"early_stopping": false,
|
123 |
+
"num_beams": 1,
|
124 |
+
"num_beam_groups": 1,
|
125 |
+
"diversity_penalty": 0.0,
|
126 |
+
"temperature": 1.0,
|
127 |
+
"top_k": 50,
|
128 |
+
"top_p": 1.0,
|
129 |
+
"typical_p": 1.0,
|
130 |
+
"repetition_penalty": 1.0,
|
131 |
+
"length_penalty": 1.0,
|
132 |
+
"no_repeat_ngram_size": 0,
|
133 |
+
"encoder_no_repeat_ngram_size": 0,
|
134 |
+
"bad_words_ids": null,
|
135 |
+
"num_return_sequences": 1,
|
136 |
+
"output_scores": false,
|
137 |
+
"return_dict_in_generate": false,
|
138 |
+
"forced_bos_token_id": null,
|
139 |
+
"forced_eos_token_id": null,
|
140 |
+
"remove_invalid_values": false,
|
141 |
+
"exponential_decay_length_penalty": null,
|
142 |
+
"suppress_tokens": null,
|
143 |
+
"begin_suppress_tokens": null,
|
144 |
+
"architectures": null,
|
145 |
+
"finetuning_task": null,
|
146 |
+
"id2label": {
|
147 |
+
"0": "LABEL_0",
|
148 |
+
"1": "LABEL_1"
|
149 |
+
},
|
150 |
+
"label2id": {
|
151 |
+
"LABEL_0": 0,
|
152 |
+
"LABEL_1": 1
|
153 |
+
},
|
154 |
+
"tokenizer_class": null,
|
155 |
+
"prefix": null,
|
156 |
"bos_token_id": 163584,
|
157 |
"pad_token_id": 163839,
|
158 |
"eos_token_id": 163585,
|
159 |
+
"sep_token_id": null,
|
160 |
+
"decoder_start_token_id": null,
|
161 |
+
"task_specific_params": null,
|
162 |
+
"problem_type": null,
|
163 |
+
"_name_or_path": "",
|
164 |
+
"_attn_implementation_autoset": false,
|
165 |
+
"model_type": "deepseek_v3"
|
166 |
},
|
167 |
+
"tf_legacy_loss": false,
|
168 |
+
"tie_encoder_decoder": false,
|
169 |
"tie_word_embeddings": false,
|
170 |
+
"tokenizer_class": null,
|
171 |
+
"top_k": 50,
|
172 |
+
"top_p": 1.0,
|
173 |
+
"torchscript": false,
|
174 |
+
"transformers_version": "4.52.0.dev0",
|
175 |
+
"typical_p": 1.0,
|
176 |
+
"use_bfloat16": false,
|
177 |
+
"vision_config": {
|
178 |
+
"return_dict": true,
|
179 |
+
"output_hidden_states": false,
|
180 |
+
"output_attentions": false,
|
181 |
+
"torchscript": false,
|
182 |
+
"torch_dtype": "bfloat16",
|
183 |
+
"use_bfloat16": false,
|
184 |
+
"tf_legacy_loss": false,
|
185 |
+
"pruned_heads": {},
|
186 |
+
"tie_word_embeddings": true,
|
187 |
+
"chunk_size_feed_forward": 0,
|
188 |
+
"is_encoder_decoder": false,
|
189 |
+
"is_decoder": false,
|
190 |
+
"cross_attention_hidden_size": null,
|
191 |
+
"add_cross_attention": false,
|
192 |
+
"tie_encoder_decoder": false,
|
193 |
+
"max_length": 20,
|
194 |
+
"min_length": 0,
|
195 |
+
"do_sample": false,
|
196 |
+
"early_stopping": false,
|
197 |
+
"num_beams": 1,
|
198 |
+
"num_beam_groups": 1,
|
199 |
+
"diversity_penalty": 0.0,
|
200 |
+
"temperature": 1.0,
|
201 |
+
"top_k": 50,
|
202 |
+
"top_p": 1.0,
|
203 |
+
"typical_p": 1.0,
|
204 |
+
"repetition_penalty": 1.0,
|
205 |
+
"length_penalty": 1.0,
|
206 |
+
"no_repeat_ngram_size": 0,
|
207 |
+
"encoder_no_repeat_ngram_size": 0,
|
208 |
+
"bad_words_ids": null,
|
209 |
+
"num_return_sequences": 1,
|
210 |
+
"output_scores": false,
|
211 |
+
"return_dict_in_generate": false,
|
212 |
+
"forced_bos_token_id": null,
|
213 |
+
"forced_eos_token_id": null,
|
214 |
+
"remove_invalid_values": false,
|
215 |
+
"exponential_decay_length_penalty": null,
|
216 |
+
"suppress_tokens": null,
|
217 |
+
"begin_suppress_tokens": null,
|
218 |
+
"architectures": null,
|
219 |
+
"finetuning_task": null,
|
220 |
+
"id2label": {
|
221 |
+
"0": "LABEL_0",
|
222 |
+
"1": "LABEL_1"
|
223 |
+
},
|
224 |
+
"label2id": {
|
225 |
+
"LABEL_0": 0,
|
226 |
+
"LABEL_1": 1
|
227 |
+
},
|
228 |
+
"tokenizer_class": null,
|
229 |
+
"prefix": null,
|
230 |
+
"bos_token_id": null,
|
231 |
+
"pad_token_id": null,
|
232 |
+
"eos_token_id": null,
|
233 |
+
"sep_token_id": null,
|
234 |
+
"decoder_start_token_id": null,
|
235 |
+
"task_specific_params": null,
|
236 |
+
"problem_type": null,
|
237 |
+
"_name_or_path": "",
|
238 |
+
"_attn_implementation_autoset": false,
|
239 |
+
"model_type": "moonvit",
|
240 |
+
"patch_size": 14,
|
241 |
+
"init_pos_emb_height": 64,
|
242 |
+
"init_pos_emb_width": 64,
|
243 |
+
"num_hidden_layers": 27,
|
244 |
+
"num_attention_heads": 16,
|
245 |
+
"hidden_size": 1152,
|
246 |
+
"intermediate_size": 4304,
|
247 |
+
"merge_kernel_size": [
|
248 |
+
2,
|
249 |
+
2
|
250 |
+
],
|
251 |
+
"skip_vision": true
|
252 |
+
},
|
253 |
"vocab_size": 163840
|
254 |
}
|
model-00001-of-00002.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9fa24384962d98e76557bbb00193e2ac40aa6456f617cbd79730eb63787c40a4
|
3 |
+
size 5356237611
|
model-00002-of-00002.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63ce34dfdd6f4ca593e196cfffe6336c304984d7c870112c9df86b6f3b719433
|
3 |
+
size 4477574765
|
model.safetensors.index.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
modeling_kimi_vl.py
CHANGED
@@ -55,10 +55,8 @@ import torch.distributed as dist
|
|
55 |
from torch.nn import CrossEntropyLoss
|
56 |
from transformers.activations import GELUActivation, ACT2FN, PytorchGELUTanh
|
57 |
from transformers.cache_utils import Cache, DynamicCache
|
58 |
-
from transformers.modeling_utils import
|
59 |
-
|
60 |
-
GenerationMixin,
|
61 |
-
)
|
62 |
from transformers.models.llava.modeling_llava import LlavaCausalLMOutputWithPast
|
63 |
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
64 |
from transformers.modeling_outputs import (
|
@@ -906,6 +904,7 @@ class MoEGate(nn.Module):
|
|
906 |
self.n_routed_experts = config.n_routed_experts
|
907 |
self.routed_scaling_factor = config.routed_scaling_factor
|
908 |
self.scoring_func = config.scoring_func
|
|
|
909 |
self.seq_aux = config.seq_aux
|
910 |
self.topk_method = config.topk_method
|
911 |
self.n_group = config.n_group
|
@@ -972,6 +971,10 @@ class MoEGate(nn.Module):
|
|
972 |
) # [n, e]
|
973 |
_, topk_idx = torch.topk(tmp_scores, k=self.top_k, dim=-1, sorted=False)
|
974 |
topk_weight = scores.gather(1, topk_idx)
|
|
|
|
|
|
|
|
|
975 |
else:
|
976 |
raise NotImplementedError(
|
977 |
f"insupportable TopK function for MoE gating: {self.topk_method}"
|
@@ -985,7 +988,57 @@ class MoEGate(nn.Module):
|
|
985 |
topk_weight * self.routed_scaling_factor
|
986 |
) # must multiply the scaling factor
|
987 |
|
988 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
989 |
|
990 |
|
991 |
class DeepseekV3MoE(nn.Module):
|
@@ -1038,9 +1091,20 @@ class DeepseekV3MoE(nn.Module):
|
|
1038 |
def forward(self, hidden_states):
|
1039 |
identity = hidden_states
|
1040 |
orig_shape = hidden_states.shape
|
1041 |
-
topk_idx, topk_weight = self.gate(hidden_states)
|
1042 |
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
1043 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1044 |
y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
|
1045 |
if self.config.n_shared_experts is not None:
|
1046 |
y = y + self.shared_experts(identity)
|
|
|
55 |
from torch.nn import CrossEntropyLoss
|
56 |
from transformers.activations import GELUActivation, ACT2FN, PytorchGELUTanh
|
57 |
from transformers.cache_utils import Cache, DynamicCache
|
58 |
+
from transformers.modeling_utils import PreTrainedModel
|
59 |
+
from transformers.generation.utils import GenerationMixin
|
|
|
|
|
60 |
from transformers.models.llava.modeling_llava import LlavaCausalLMOutputWithPast
|
61 |
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
62 |
from transformers.modeling_outputs import (
|
|
|
904 |
self.n_routed_experts = config.n_routed_experts
|
905 |
self.routed_scaling_factor = config.routed_scaling_factor
|
906 |
self.scoring_func = config.scoring_func
|
907 |
+
self.alpha = config.aux_loss_alpha
|
908 |
self.seq_aux = config.seq_aux
|
909 |
self.topk_method = config.topk_method
|
910 |
self.n_group = config.n_group
|
|
|
971 |
) # [n, e]
|
972 |
_, topk_idx = torch.topk(tmp_scores, k=self.top_k, dim=-1, sorted=False)
|
973 |
topk_weight = scores.gather(1, topk_idx)
|
974 |
+
elif self.topk_method == "greedy":
|
975 |
+
topk_weight, topk_idx = torch.topk(
|
976 |
+
scores, k=self.top_k, dim=-1, sorted=False
|
977 |
+
)
|
978 |
else:
|
979 |
raise NotImplementedError(
|
980 |
f"insupportable TopK function for MoE gating: {self.topk_method}"
|
|
|
988 |
topk_weight * self.routed_scaling_factor
|
989 |
) # must multiply the scaling factor
|
990 |
|
991 |
+
if self.training and self.alpha > 0.0:
|
992 |
+
scores_for_aux = scores
|
993 |
+
aux_topk = self.top_k
|
994 |
+
# always compute aux loss based on the naive greedy topk method
|
995 |
+
topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
|
996 |
+
if self.seq_aux:
|
997 |
+
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
|
998 |
+
ce = torch.zeros(
|
999 |
+
bsz, self.n_routed_experts, device=hidden_states.device
|
1000 |
+
)
|
1001 |
+
ce.scatter_add_(
|
1002 |
+
1,
|
1003 |
+
topk_idx_for_aux_loss,
|
1004 |
+
torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device),
|
1005 |
+
).div_(seq_len * aux_topk / self.n_routed_experts)
|
1006 |
+
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(
|
1007 |
+
dim=1
|
1008 |
+
).mean() * self.alpha
|
1009 |
+
else:
|
1010 |
+
mask_ce = F.one_hot(
|
1011 |
+
topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts
|
1012 |
+
)
|
1013 |
+
ce = mask_ce.float().mean(0)
|
1014 |
+
Pi = scores_for_aux.mean(0)
|
1015 |
+
fi = ce * self.n_routed_experts
|
1016 |
+
aux_loss = (Pi * fi).sum() * self.alpha
|
1017 |
+
else:
|
1018 |
+
aux_loss = None
|
1019 |
+
|
1020 |
+
return topk_idx, topk_weight, aux_loss
|
1021 |
+
|
1022 |
+
|
1023 |
+
class AddAuxiliaryLoss(torch.autograd.Function):
|
1024 |
+
"""
|
1025 |
+
The trick function of adding auxiliary (aux) loss,
|
1026 |
+
which includes the gradient of the aux loss during backpropagation.
|
1027 |
+
"""
|
1028 |
+
|
1029 |
+
@staticmethod
|
1030 |
+
def forward(ctx, x, loss):
|
1031 |
+
assert loss.numel() == 1
|
1032 |
+
ctx.dtype = loss.dtype
|
1033 |
+
ctx.required_aux_loss = loss.requires_grad
|
1034 |
+
return x
|
1035 |
+
|
1036 |
+
@staticmethod
|
1037 |
+
def backward(ctx, grad_output):
|
1038 |
+
grad_loss = None
|
1039 |
+
if ctx.required_aux_loss:
|
1040 |
+
grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
|
1041 |
+
return grad_output, grad_loss
|
1042 |
|
1043 |
|
1044 |
class DeepseekV3MoE(nn.Module):
|
|
|
1091 |
def forward(self, hidden_states):
|
1092 |
identity = hidden_states
|
1093 |
orig_shape = hidden_states.shape
|
1094 |
+
topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
|
1095 |
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
1096 |
+
if self.training:
|
1097 |
+
flat_topk_idx = topk_idx.view(-1)
|
1098 |
+
hidden_states = hidden_states.repeat_interleave(
|
1099 |
+
self.num_experts_per_tok, dim=0
|
1100 |
+
)
|
1101 |
+
y = torch.empty_like(hidden_states)
|
1102 |
+
for i, expert in enumerate(self.experts):
|
1103 |
+
y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
|
1104 |
+
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
1105 |
+
y = y.to(hidden_states.dtype).view(*orig_shape)
|
1106 |
+
y = AddAuxiliaryLoss.apply(y, aux_loss)
|
1107 |
+
else:
|
1108 |
y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
|
1109 |
if self.config.n_shared_experts is not None:
|
1110 |
y = y + self.shared_experts(identity)
|
preprocessor_config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoImageProcessor": "image_processing_kimi_vl.KimiVLImageProcessor",
|
4 |
+
"AutoProcessor": "processing_kimi_vl.KimiVLProcessor"
|
5 |
+
},
|
6 |
+
"image_mean": [
|
7 |
+
0.5,
|
8 |
+
0.5,
|
9 |
+
0.5
|
10 |
+
],
|
11 |
+
"image_processor_type": "KimiVLImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.5,
|
14 |
+
0.5,
|
15 |
+
0.5
|
16 |
+
],
|
17 |
+
"in_token_limit": 4096,
|
18 |
+
"merge_kernel_size": [
|
19 |
+
2,
|
20 |
+
2
|
21 |
+
],
|
22 |
+
"num_pooled_tokens": 1024,
|
23 |
+
"pad_input": true,
|
24 |
+
"patch_size": 14,
|
25 |
+
"processor_class": "KimiVLProcessor"
|
26 |
+
}
|
processor_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_kimi_vl.KimiVLProcessor"
|
4 |
+
},
|
5 |
+
"processor_class": "KimiVLProcessor"
|
6 |
+
}
|
tokenization_moonshot.py
CHANGED
@@ -16,6 +16,7 @@ from shutil import copyfile
|
|
16 |
from tiktoken.load import load_tiktoken_bpe
|
17 |
from tokenizers import AddedToken
|
18 |
from transformers.tokenization_utils import PreTrainedTokenizer
|
|
|
19 |
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
|
20 |
|
21 |
|
@@ -229,6 +230,8 @@ class TikTokenTokenizer(PreTrainedTokenizer):
|
|
229 |
if len(kwargs) > 0:
|
230 |
return super().decode(token_ids, **kwargs)
|
231 |
|
|
|
|
|
232 |
if type(token_ids) is int:
|
233 |
token_ids = [token_ids]
|
234 |
|
|
|
16 |
from tiktoken.load import load_tiktoken_bpe
|
17 |
from tokenizers import AddedToken
|
18 |
from transformers.tokenization_utils import PreTrainedTokenizer
|
19 |
+
from transformers.utils import to_py_obj
|
20 |
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
|
21 |
|
22 |
|
|
|
230 |
if len(kwargs) > 0:
|
231 |
return super().decode(token_ids, **kwargs)
|
232 |
|
233 |
+
token_ids = to_py_obj(token_ids)
|
234 |
+
|
235 |
if type(token_ids) is int:
|
236 |
token_ids = [token_ids]
|
237 |
|
tokenizer_config.json
CHANGED
@@ -117,18 +117,19 @@
|
|
117 |
"<|media_pad|>"
|
118 |
],
|
119 |
"auto_map": {
|
|
|
120 |
"AutoTokenizer": [
|
121 |
"tokenization_moonshot.TikTokenTokenizer",
|
122 |
null
|
123 |
]
|
124 |
},
|
125 |
"bos_token": "[BOS]",
|
126 |
-
"chat_template": "{%- for message in messages -%}{%- if loop.first and messages[0]['role'] != 'system' -%}{{'<|im_system|>system<|im_middle|>You are a helpful assistant<|im_end|>'}}{%- endif -%}{%- if message['role'] == 'system' -%}{{'<|im_system|>'}}{%- endif -%}{%- if message['role'] == 'user' -%}{{'<|im_user|>'}}{%- endif -%}{%- if message['role'] == 'assistant' -%}{{'<|im_assistant|>'}}{%- endif -%}{{- message['role'] -}}{{'<|im_middle|>'}}{%- if message['content'] is string -%}{{- message['content'] + '<|im_end|>' -}}{%- else -%}{%- for content in message['content'] -%}{%- if content['type'] == 'image' or 'image' in content or 'image_url' in content -%}{{'<|media_start|>image<|media_content|><|media_pad|><|media_end|>'}}{%- else -%}{{content['text']}}{%- endif -%}{%- endfor -%}{{'<|im_end|>'}}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{'<|im_assistant|>assistant<|im_middle|>'}}{%- endif -%}",
|
127 |
"clean_up_tokenization_spaces": false,
|
128 |
"eos_token": "[EOS]",
|
129 |
"extra_special_tokens": {},
|
130 |
"model_max_length": 1048576,
|
131 |
"pad_token": "[PAD]",
|
|
|
132 |
"tokenizer_class": "TikTokenTokenizer",
|
133 |
"unk_token": "[UNK]"
|
134 |
}
|
|
|
117 |
"<|media_pad|>"
|
118 |
],
|
119 |
"auto_map": {
|
120 |
+
"AutoProcessor": "processing_kimi_vl.KimiVLProcessor",
|
121 |
"AutoTokenizer": [
|
122 |
"tokenization_moonshot.TikTokenTokenizer",
|
123 |
null
|
124 |
]
|
125 |
},
|
126 |
"bos_token": "[BOS]",
|
|
|
127 |
"clean_up_tokenization_spaces": false,
|
128 |
"eos_token": "[EOS]",
|
129 |
"extra_special_tokens": {},
|
130 |
"model_max_length": 1048576,
|
131 |
"pad_token": "[PAD]",
|
132 |
+
"processor_class": "KimiVLProcessor",
|
133 |
"tokenizer_class": "TikTokenTokenizer",
|
134 |
"unk_token": "[UNK]"
|
135 |
}
|