--- library_name: transformers license: apache-2.0 language: - en tags: - fill-mask - masked-lm - long-context - modernbert - mlx pipeline_tag: fill-mask inference: false --- # mlx-community/answerdotai-ModernBERT-base-4bit The Model [mlx-community/answerdotai-ModernBERT-base-4bit](https://huggingface.co/mlx-community/answerdotai-ModernBERT-base-4bit) was converted to MLX format from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) using mlx-lm version **0.0.3**. ## Use with mlx ```bash pip install mlx-embeddings ``` ```python from mlx_embeddings import load, generate import mlx.core as mx model, tokenizer = load("mlx-community/answerdotai-ModernBERT-base-4bit") # For text embeddings output = generate(model, processor, texts=["I like grapes", "I like fruits"]) embeddings = output.text_embeds # Normalized embeddings # Compute dot product between normalized embeddings similarity_matrix = mx.matmul(embeddings, embeddings.T) print("Similarity matrix between texts:") print(similarity_matrix) ```