Deepesh Chaudhari
commited on
Commit
·
63c81ac
1
Parent(s):
54a759a
Initial commit
Browse files- README.md +101 -0
- config.json +28 -0
- flax_model.msgpack +3 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tf_model.h5 +3 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: zh
|
3 |
+
datasets: CLUECorpusSmall
|
4 |
+
widget:
|
5 |
+
- text: "这是很久之前的事情了"
|
6 |
+
|
7 |
+
|
8 |
+
---
|
9 |
+
|
10 |
+
|
11 |
+
# Chinese GPT2 Model
|
12 |
+
|
13 |
+
## Model description
|
14 |
+
|
15 |
+
The model is used to generate Chinese texts. You can download the model either from the [GPT2-Chinese Github page](https://github.com/Morizeyao/GPT2-Chinese), or via HuggingFace from the link [gpt2-chinese-cluecorpussmall](https://huggingface.co/uer/gpt2-chinese-cluecorpussmall).
|
16 |
+
|
17 |
+
## How to use
|
18 |
+
|
19 |
+
You can use the model directly with a pipeline for text generation:
|
20 |
+
|
21 |
+
```python
|
22 |
+
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
|
23 |
+
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-cluecorpussmall")
|
24 |
+
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-cluecorpussmall")
|
25 |
+
>>> text_generator = TextGenerationPipeline(model, tokenizer)
|
26 |
+
>>> text_generator("这是很久之前的事情了", max_length=100, do_sample=True)
|
27 |
+
[{'generated_text': '这是很久之前的事情了 , 我 曾 经 把 这 个 当 做 一 种 思 想 的 传 承 , 或 者 是 人 生 的 回 顾 , 当 时 我 们 是 一 个 刚 刚 加 入 的 时 候 就 想 要 加 入 他 们 , 于 是 我 们 每 天 看 到 他 们 , 加 上 他 们 的 各 种 不 可 思 议 的 行 为 , 直 到 现 在 , 我 们 的 人 生 才 完 整 起 来 。'}]
|
28 |
+
```
|
29 |
+
|
30 |
+
## Training data
|
31 |
+
|
32 |
+
[CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data.
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 1024.
|
37 |
+
|
38 |
+
Stage1:
|
39 |
+
|
40 |
+
```
|
41 |
+
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
|
42 |
+
--vocab_path models/google_zh_vocab.txt \
|
43 |
+
--dataset_path cluecorpussmall_lm_seq128_dataset.pt \
|
44 |
+
--seq_length 128 --processes_num 32 --data_processor lm
|
45 |
+
```
|
46 |
+
|
47 |
+
```
|
48 |
+
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq128_dataset.pt \
|
49 |
+
--vocab_path models/google_zh_vocab.txt \
|
50 |
+
--config_path models/gpt2/config.json \
|
51 |
+
--output_model_path models/cluecorpussmall_gpt2_seq128_model.bin \
|
52 |
+
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
|
53 |
+
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
|
54 |
+
--learning_rate 1e-4 --batch_size 64
|
55 |
+
```
|
56 |
+
|
57 |
+
Stage2:
|
58 |
+
|
59 |
+
```
|
60 |
+
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
|
61 |
+
--vocab_path models/google_zh_vocab.txt \
|
62 |
+
--dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
|
63 |
+
--seq_length 1024 --processes_num 32 --data_processor lm
|
64 |
+
```
|
65 |
+
|
66 |
+
```
|
67 |
+
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
|
68 |
+
--vocab_path models/google_zh_vocab.txt \
|
69 |
+
--pretrained_model_path models/cluecorpussmall_gpt2_seq128_model.bin-1000000 \
|
70 |
+
--config_path models/gpt2/config.json \
|
71 |
+
--output_model_path models/cluecorpussmall_gpt2_seq1024_model.bin \
|
72 |
+
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
|
73 |
+
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
|
74 |
+
--learning_rate 5e-5 --batch_size 16
|
75 |
+
```
|
76 |
+
|
77 |
+
Finally, we convert the pre-trained model into Huggingface's format:
|
78 |
+
|
79 |
+
```
|
80 |
+
python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path cluecorpussmall_gpt2_seq1024_model.bin-250000 \
|
81 |
+
--output_model_path pytorch_model.bin \
|
82 |
+
--layers_num 12
|
83 |
+
```
|
84 |
+
|
85 |
+
### BibTeX entry and citation info
|
86 |
+
|
87 |
+
```
|
88 |
+
@article{radford2019language,
|
89 |
+
title={Language Models are Unsupervised Multitask Learners},
|
90 |
+
author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
|
91 |
+
year={2019}
|
92 |
+
}
|
93 |
+
|
94 |
+
@article{zhao2019uer,
|
95 |
+
title={UER: An Open-Source Toolkit for Pre-training Models},
|
96 |
+
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
|
97 |
+
journal={EMNLP-IJCNLP 2019},
|
98 |
+
pages={241},
|
99 |
+
year={2019}
|
100 |
+
}
|
101 |
+
```
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_function": "gelu_new",
|
3 |
+
"architectures": [
|
4 |
+
"GPT2LMHeadModel"
|
5 |
+
],
|
6 |
+
"attn_pdrop": 0.1,
|
7 |
+
"embd_pdrop": 0.1,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"layer_norm_epsilon": 1e-05,
|
11 |
+
"model_type": "gpt2",
|
12 |
+
"n_ctx": 1024,
|
13 |
+
"n_embd": 768,
|
14 |
+
"n_head": 12,
|
15 |
+
"n_inner": null,
|
16 |
+
"n_layer": 12,
|
17 |
+
"n_positions": 1024,
|
18 |
+
"output_past": true,
|
19 |
+
"resid_pdrop": 0.1,
|
20 |
+
"task_specific_params": {
|
21 |
+
"text-generation": {
|
22 |
+
"do_sample": true,
|
23 |
+
"max_length": 320
|
24 |
+
}
|
25 |
+
},
|
26 |
+
"tokenizer_class": "BertTokenizer",
|
27 |
+
"vocab_size": 21128
|
28 |
+
}
|
flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4666386645774dbe82957ac3fab025e49604413933736ddba622dd1ed27907fc
|
3 |
+
size 408279832
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5478b950f53650c82f7f7e91010787c870813a76adeabe23c8571b01af1379b4
|
3 |
+
size 420921295
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1ba399af35aeaa3ad1a96f5501dcdb21a1e76ad42ecac188cb53c307d3cd93b
|
3 |
+
size 408449360
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 1024}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|