# coding=utf-8 # Copyright 2025 The Moonshot Team and HuggingFace Inc. team. All rights reserved. # # The code is based on the Qwen2VL processor (qwen2_vl/processing_qwen2_vl.py), but modified for KimiVL. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for KimiVL. """ from typing import List, Union from transformers.feature_extraction_utils import BatchFeature from transformers.image_utils import ImageInput from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order from transformers.tokenization_utils_base import PreTokenizedInput, TextInput from transformers.utils import logging logger = logging.get_logger(__name__) class KimiVLProcessorKwargs(ProcessingKwargs, total=False): _defaults = { "text_kwargs": { "padding": False, }, "images_kwargs": {}, } class KimiVLProcessor(ProcessorMixin): r""" Constructs a KimiVL processor which wraps a KimiVL image processor and a tokenizer into a single processor. [`KimiVLProcessor`] offers all the functionalities of [`KimiVLImageProcessor`] and [`TikTokenTokenizer`]. See the [`~KimiVLProcessor.__call__`] and [`~KimiVLProcessor.decode`] for more information. Args: image_processor ([`KimiVLImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`TikTokenTokenizer`], *optional*): The tokenizer is a required input. chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. """ attributes = ["image_processor", "tokenizer"] valid_kwargs = [ "chat_template"] image_processor_class = "AutoImageProcessor" tokenizer_class = "AutoTokenizer" def __init__( self, image_processor=None, tokenizer=None, chat_template=None, **kwargs, ): self.image_token = "<|media_pad|>" super().__init__(image_processor, tokenizer, chat_template=chat_template) def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, **kwargs: Unpack[KimiVLProcessorKwargs], ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to TikTokenTokenizer's [`~TikTokenTokenizer.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring of the above two methods for more information. Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if images is None and text is None: raise ValueError("You have to specify at least one of `images` or `text`.") # check if images and text inputs are reversed for BC images, text = _validate_images_text_input_order(images, text) output_kwargs = self._merge_kwargs( KimiVLProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) if images is not None: image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"]) image_grid_hws = image_inputs["image_grid_hws"] else: image_inputs = {} image_grid_hws = None if isinstance(text, str): text = [text] elif not isinstance(text, list) and not isinstance(text[0], str): raise ValueError("Invalid input text. Please provide a string, or a list of strings") if image_grid_hws is not None: merge_length = self.image_processor.merge_kernel_size[0] * self.image_processor.merge_kernel_size[1] index = 0 for i in range(len(text)): while self.image_token in text[i]: text[i] = text[i].replace( self.image_token, "<|placeholder|>" * (image_grid_hws[index].prod() // merge_length), 1, ) index += 1 text[i] = text[i].replace("<|placeholder|>", self.image_token) text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"]) return BatchFeature(data={**text_inputs, **image_inputs}) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) __all__ = ["KimiVLProcessorKwargs"]