zhouzaida
commited on
Commit
·
f5378d2
1
Parent(s):
0e5541e
upload
Browse files- .gitattributes +1 -0
- README.md +38 -0
- config.json +20 -0
- configuration_moonvit.py +30 -0
- figures/demo.png +3 -0
- figures/logo.png +3 -0
- image_processing_moonvit.py +126 -0
- model.safetensors +3 -0
- modeling_moonvit.py +560 -0
- preprocessor_config.json +19 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,41 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
|
5 |
+
|
6 |
+
<div align="center">
|
7 |
+
<img width="30%" src="figures/logo.png">
|
8 |
+
</div>
|
9 |
+
|
10 |
+
|
11 |
+
## Introduction
|
12 |
+
|
13 |
+
**MoonViT** is a Native-resolution Vision Encoder, which is initialized from and continually pre-trained on **SigLIP-SO-400M**.
|
14 |
+
To facilitate the standalone use of MoonViT, we have separated the implementation and weights of MoonViT from [moonshotai/Kimi-VL-A3B-Instruct](https://huggingface.co/moonshotai/Kimi-VL-A3B-Instruct).
|
15 |
+
|
16 |
+
If you are interested in the training process of MoonViT, you are welcome to read Paper [Kimi-VL Technical Report](https://huggingface.co/papers/2504.07491).
|
17 |
+
|
18 |
+
## Example usage
|
19 |
+
|
20 |
+
```python
|
21 |
+
from PIL import Image
|
22 |
+
from transformers import AutoModel, AutoImageProcessor
|
23 |
+
|
24 |
+
model_path = "moonshotai/MoonViT-SO-400M"
|
25 |
+
model = AutoModel.from_pretrained(
|
26 |
+
model_path,
|
27 |
+
torch_dtype="auto",
|
28 |
+
device_map="auto",
|
29 |
+
trust_remote_code=True,
|
30 |
+
)
|
31 |
+
processor = AutoImageProcessor.from_pretrained(model_path, trust_remote_code=True)
|
32 |
+
|
33 |
+
image_path = "./figures/demo.png"
|
34 |
+
image = Image.open(image_path)
|
35 |
+
|
36 |
+
images_processed = processor(image, return_tensors="pt").to(dtype=model.dtype, device=model.device)
|
37 |
+
image_features: list = model(images_processed.pixel_values, images_processed.image_grid_hws)
|
38 |
+
|
39 |
+
print(f"dtype: {image_features[0].dtype}, shape: {image_features[0].shape}")
|
40 |
+
# dtype: torch.bfloat16, shape: torch.Size([1092, 4, 1152])
|
41 |
+
```
|
config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoConfig": "configuration_moonvit.MoonViTConfig",
|
4 |
+
"AutoModel": "modeling_moonvit.MoonVitPretrainedModel"
|
5 |
+
},
|
6 |
+
"model_type": "moonvit",
|
7 |
+
"patch_size": 14,
|
8 |
+
"num_attention_heads": 16,
|
9 |
+
"num_hidden_layers": 27,
|
10 |
+
"hidden_size": 1152,
|
11 |
+
"intermediate_size": 4304,
|
12 |
+
"init_pos_emb_height": 64,
|
13 |
+
"init_pos_emb_width": 64,
|
14 |
+
"merge_kernel_size": [
|
15 |
+
2,
|
16 |
+
2
|
17 |
+
],
|
18 |
+
"torch_dtype": "bfloat16",
|
19 |
+
"transformers_version": "4.50.3"
|
20 |
+
}
|
configuration_moonvit.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class MoonViTConfig(PretrainedConfig):
|
5 |
+
model_type = "moonvit"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
patch_size: int = 14,
|
10 |
+
init_pos_emb_height: int = 64,
|
11 |
+
init_pos_emb_width: int = 64,
|
12 |
+
num_attention_heads: int = 16,
|
13 |
+
num_hidden_layers: int = 27,
|
14 |
+
hidden_size: int = 1152,
|
15 |
+
intermediate_size: int = 4304,
|
16 |
+
merge_kernel_size: tuple[int, int] = (2, 2),
|
17 |
+
**kwargs,
|
18 |
+
):
|
19 |
+
super().__init__(**kwargs)
|
20 |
+
self.patch_size = patch_size
|
21 |
+
# Positional embedding config
|
22 |
+
self.init_pos_emb_height = init_pos_emb_height
|
23 |
+
self.init_pos_emb_width = init_pos_emb_width
|
24 |
+
# Transformer config
|
25 |
+
self.num_hidden_layers = num_hidden_layers
|
26 |
+
self.num_attention_heads = num_attention_heads
|
27 |
+
self.hidden_size = hidden_size
|
28 |
+
self.intermediate_size = intermediate_size
|
29 |
+
# Patch merger config
|
30 |
+
self.merge_kernel_size = merge_kernel_size
|
figures/demo.png
ADDED
![]() |
Git LFS Details
|
figures/logo.png
ADDED
![]() |
Git LFS Details
|
image_processing_moonvit.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Image processor class for KimiVL."""
|
2 |
+
|
3 |
+
import math
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from typing import Optional, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torchvision.transforms import functional as TF
|
10 |
+
from transformers.image_utils import ImageInput, make_list_of_images, valid_images
|
11 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
12 |
+
from transformers.utils import TensorType
|
13 |
+
|
14 |
+
|
15 |
+
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
|
16 |
+
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
|
17 |
+
|
18 |
+
|
19 |
+
class MoonViTImageProcessor(BaseImageProcessor):
|
20 |
+
model_type = "moonvit"
|
21 |
+
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
patch_size: int = 14,
|
25 |
+
pad_input: bool = False,
|
26 |
+
image_mean: tuple[float, float, float] = OPENAI_DATASET_MEAN,
|
27 |
+
image_std: tuple[float, float, float] = OPENAI_DATASET_STD,
|
28 |
+
in_token_limit: int = 4096,
|
29 |
+
merge_kernel_size: list[int, int] = [2, 2],
|
30 |
+
**kwargs,
|
31 |
+
):
|
32 |
+
super().__init__(**kwargs)
|
33 |
+
self.in_token_limit = in_token_limit
|
34 |
+
self.patch_size = patch_size
|
35 |
+
self.pad_input = pad_input
|
36 |
+
self.image_mean = image_mean
|
37 |
+
self.image_std = image_std
|
38 |
+
self.merge_kernel_size = merge_kernel_size
|
39 |
+
|
40 |
+
def rescale(
|
41 |
+
self, image: Image.Image, merge_kernel_size: list[int, int] = [2, 2]
|
42 |
+
) -> Image.Image:
|
43 |
+
w, h = image.size
|
44 |
+
patch_size = self.patch_size
|
45 |
+
|
46 |
+
if (w // patch_size) * (h // patch_size) > self.in_token_limit:
|
47 |
+
scale = math.sqrt(self.in_token_limit / ((w // patch_size) * (h // patch_size)))
|
48 |
+
new_w, new_h = int(w * scale), int(h * scale)
|
49 |
+
image = image.resize((new_w, new_h), Image.Resampling.BICUBIC)
|
50 |
+
if self.pad_input:
|
51 |
+
new_w, new_h = image.size
|
52 |
+
pad_size_h = merge_kernel_size[0] * patch_size
|
53 |
+
pad_size_w = merge_kernel_size[1] * patch_size
|
54 |
+
|
55 |
+
pad_h = (pad_size_h - new_h % pad_size_h) % pad_size_h
|
56 |
+
pad_w = (pad_size_w - new_w % pad_size_w) % pad_size_w
|
57 |
+
|
58 |
+
image = TF.pad(image, (0, 0, pad_w, pad_h))
|
59 |
+
else:
|
60 |
+
new_w, new_h = image.size
|
61 |
+
new_w = new_w - new_w % patch_size
|
62 |
+
new_h = new_h - new_h % patch_size
|
63 |
+
image = TF.center_crop(image, (new_h, new_w))
|
64 |
+
|
65 |
+
w, h = image.size
|
66 |
+
if w // patch_size >= 512 or h // patch_size >= 512:
|
67 |
+
raise ValueError("Exceed pos emb")
|
68 |
+
|
69 |
+
return image
|
70 |
+
|
71 |
+
def to_tensor(self, image: Image.Image) -> torch.Tensor:
|
72 |
+
return TF.to_tensor(image.convert("RGB"))
|
73 |
+
|
74 |
+
def normalize(self, image: torch.Tensor) -> torch.Tensor:
|
75 |
+
return TF.normalize(image, self.image_mean, self.image_std)
|
76 |
+
|
77 |
+
def patchify(self, image: torch.Tensor) -> tuple[torch.Tensor, list[int, int]]:
|
78 |
+
patch_size = self.patch_size
|
79 |
+
C, H, W = image.shape
|
80 |
+
patches = image.reshape(C, H // patch_size, patch_size, W // patch_size, patch_size)
|
81 |
+
patches = patches.permute(1, 3, 0, 2, 4)
|
82 |
+
patches = patches.contiguous().view(-1, C, patch_size, patch_size)
|
83 |
+
grid_hw = (H // patch_size, W // patch_size)
|
84 |
+
return patches, grid_hw
|
85 |
+
|
86 |
+
def _preprocess(self, image: ImageInput) -> tuple[torch.Tensor, list[int, int]]:
|
87 |
+
"""
|
88 |
+
Preprocess image and patchify it.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
image (`ImageInput`):
|
92 |
+
Image to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
patches: torch.Tensor
|
96 |
+
grid_hw: list[int, int]
|
97 |
+
"""
|
98 |
+
image = self.rescale(image, self.merge_kernel_size)
|
99 |
+
image = self.to_tensor(image)
|
100 |
+
image = self.normalize(image)
|
101 |
+
patches, grid_hw = self.patchify(image)
|
102 |
+
return patches, grid_hw
|
103 |
+
|
104 |
+
def preprocess(
|
105 |
+
self,
|
106 |
+
images: ImageInput,
|
107 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
108 |
+
) -> BatchFeature:
|
109 |
+
images = make_list_of_images(images)
|
110 |
+
|
111 |
+
if not valid_images(images):
|
112 |
+
raise ValueError(
|
113 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
114 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
115 |
+
)
|
116 |
+
|
117 |
+
pixel_values, image_grid_hws = [], []
|
118 |
+
for image in images:
|
119 |
+
patches, image_grid_hw = self._preprocess(image)
|
120 |
+
pixel_values.append(patches)
|
121 |
+
image_grid_hws.append(image_grid_hw)
|
122 |
+
pixel_values = torch.concat(pixel_values, dim=0)
|
123 |
+
image_grid_hws = np.array(image_grid_hws)
|
124 |
+
data = {"pixel_values": pixel_values, "image_grid_hws": image_grid_hws}
|
125 |
+
|
126 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a375216ea19430d70c8f68d4d205fae011f1b2ad9a124238bcd7006324e1fdde
|
3 |
+
size 833765656
|
modeling_moonvit.py
ADDED
@@ -0,0 +1,560 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from copy import deepcopy
|
3 |
+
from typing import Union, Tuple, Sequence, Optional, List
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from transformers.activations import PytorchGELUTanh
|
9 |
+
from transformers.modeling_utils import PreTrainedModel
|
10 |
+
from transformers.utils import is_flash_attn_2_available
|
11 |
+
|
12 |
+
from .configuration_moonvit import MoonViTConfig
|
13 |
+
|
14 |
+
if is_flash_attn_2_available():
|
15 |
+
from flash_attn import flash_attn_varlen_func
|
16 |
+
else:
|
17 |
+
flash_attn_varlen_func = None
|
18 |
+
|
19 |
+
|
20 |
+
def multihead_attention(
|
21 |
+
q: torch.Tensor,
|
22 |
+
k: torch.Tensor,
|
23 |
+
v: torch.Tensor,
|
24 |
+
q_cu_seqlens: Optional[torch.Tensor] = None,
|
25 |
+
k_cu_seqlens: Optional[torch.Tensor] = None,
|
26 |
+
):
|
27 |
+
"""Multi-head attention using flash attention 2.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
q, k, v: tensor of shape (batch_size, seqlen, num_heads, head_dim),
|
31 |
+
or (tot_seqlens, num_heads, head_dim) if packing.
|
32 |
+
q_cu_seqlens (torch.Tensor): cumulative sequence lengths of q.
|
33 |
+
The first element should be 0 and the last element should be q.shape[0].
|
34 |
+
k_cu_seqlens (torch.Tensor): cumulative sequence lengths of k.
|
35 |
+
The first element should be 0 and the last element should be k.shape[0].
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
output: shape (batch_size, seqlen, dim) or (tot_seqlens, dim) if packing,
|
39 |
+
where dim = num_heads * head_dim
|
40 |
+
"""
|
41 |
+
# Unified format legal check
|
42 |
+
assert q.dim() == k.dim() == v.dim() == 3, "q, k, v must have 3 dims"
|
43 |
+
assert q_cu_seqlens[-1] == q.shape[0], "q_cu_seqlens must sum to q.shape[0]"
|
44 |
+
assert (
|
45 |
+
k_cu_seqlens[-1] == k.shape[0] == v.shape[0]
|
46 |
+
), "k_cu_seqlens must sum to k.shape[0]"
|
47 |
+
assert q.dtype in [
|
48 |
+
torch.bfloat16,
|
49 |
+
torch.float16,
|
50 |
+
], f"unsupported dtype {q.dtype} for multihead attn"
|
51 |
+
|
52 |
+
max_seqlen_q = (q_cu_seqlens[1:] - q_cu_seqlens[:-1]).max().item()
|
53 |
+
max_seqlen_k = (k_cu_seqlens[1:] - k_cu_seqlens[:-1]).max().item()
|
54 |
+
attn_out = flash_attn_varlen_func(
|
55 |
+
q,
|
56 |
+
k,
|
57 |
+
v,
|
58 |
+
q_cu_seqlens,
|
59 |
+
k_cu_seqlens,
|
60 |
+
max_seqlen_q,
|
61 |
+
max_seqlen_k,
|
62 |
+
causal=False,
|
63 |
+
)
|
64 |
+
attn_out = attn_out.flatten(start_dim=-2)
|
65 |
+
|
66 |
+
return attn_out
|
67 |
+
|
68 |
+
|
69 |
+
def sdpa_attention(
|
70 |
+
q: torch.Tensor,
|
71 |
+
k: torch.Tensor,
|
72 |
+
v: torch.Tensor,
|
73 |
+
q_cu_seqlens: Optional[torch.Tensor] = None,
|
74 |
+
k_cu_seqlens: Optional[torch.Tensor] = None,
|
75 |
+
) -> torch.Tensor:
|
76 |
+
"""SDPA attention.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
q, k, v: tensor of shape (batch_size, seqlen, num_heads, head_dim),
|
80 |
+
or (tot_seqlens, num_heads, head_dim) if packing.
|
81 |
+
"""
|
82 |
+
seq_length = q.shape[0]
|
83 |
+
attention_mask = torch.zeros(
|
84 |
+
[1, seq_length, seq_length], device=q.device, dtype=torch.bool
|
85 |
+
)
|
86 |
+
for i in range(1, len(q_cu_seqlens)):
|
87 |
+
attention_mask[
|
88 |
+
...,
|
89 |
+
q_cu_seqlens[i - 1] : q_cu_seqlens[i],
|
90 |
+
q_cu_seqlens[i - 1] : q_cu_seqlens[i],
|
91 |
+
] = True
|
92 |
+
q = q.transpose(0, 1)
|
93 |
+
k = k.transpose(0, 1)
|
94 |
+
v = v.transpose(0, 1)
|
95 |
+
attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
|
96 |
+
attn_output = attn_output.transpose(0, 1)
|
97 |
+
attn_output = attn_output.reshape(seq_length, -1)
|
98 |
+
return attn_output
|
99 |
+
|
100 |
+
|
101 |
+
def eager_attention(
|
102 |
+
q: torch.Tensor,
|
103 |
+
k: torch.Tensor,
|
104 |
+
v: torch.Tensor,
|
105 |
+
q_cu_seqlens: Optional[torch.Tensor] = None,
|
106 |
+
k_cu_seqlens: Optional[torch.Tensor] = None,
|
107 |
+
) -> torch.Tensor:
|
108 |
+
seq_length = q.shape[0]
|
109 |
+
attention_mask = torch.zeros(
|
110 |
+
[1, seq_length, seq_length], device=q.device, dtype=torch.bool
|
111 |
+
)
|
112 |
+
for i in range(1, len(q_cu_seqlens)):
|
113 |
+
attention_mask[
|
114 |
+
...,
|
115 |
+
q_cu_seqlens[i - 1] : q_cu_seqlens[i],
|
116 |
+
q_cu_seqlens[i - 1] : q_cu_seqlens[i],
|
117 |
+
] = True
|
118 |
+
q = q.transpose(0, 1)
|
119 |
+
k = k.transpose(0, 1)
|
120 |
+
v = v.transpose(0, 1)
|
121 |
+
|
122 |
+
attn_weight = q @ k.transpose(-2, -1) / math.sqrt(q.shape[-1])
|
123 |
+
attn_weight += attention_mask
|
124 |
+
attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32).to(q.dtype)
|
125 |
+
|
126 |
+
attn_output = attn_weight @ v
|
127 |
+
attn_output = attn_output.transpose(0, 1)
|
128 |
+
attn_output = attn_output.reshape(seq_length, -1)
|
129 |
+
return attn_output
|
130 |
+
|
131 |
+
|
132 |
+
VL_VISION_ATTENTION_FUNCTIONS = {
|
133 |
+
"flash_attention_2": multihead_attention,
|
134 |
+
"sdpa": sdpa_attention,
|
135 |
+
"eager": eager_attention,
|
136 |
+
}
|
137 |
+
|
138 |
+
|
139 |
+
def _apply_rope_input_validation(x, freqs_cis):
|
140 |
+
assert x.ndim == freqs_cis.ndim + 1, (x.shape, freqs_cis.shape)
|
141 |
+
assert x.shape[:-2] == freqs_cis.shape[:-1], (x.shape, freqs_cis.shape)
|
142 |
+
assert x.shape[-1] == 2 * freqs_cis.shape[-1], (x.shape, freqs_cis.shape)
|
143 |
+
assert freqs_cis.dtype == torch.complex64, freqs_cis.dtype
|
144 |
+
|
145 |
+
|
146 |
+
def apply_rope(
|
147 |
+
xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor
|
148 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
149 |
+
"""
|
150 |
+
Args: (The leading dimensions of all inputs should be the same)
|
151 |
+
xq: query, tensor of shape (..., num_heads, head_dim)
|
152 |
+
xk: key, tensor of shape (..., num_heads, head_dim)
|
153 |
+
freqs_cis: tensor of shape (..., head_dim/2), dtype=torch.complex64. It contains the precomputed cis(freqs) for each position in the 2D grid.
|
154 |
+
Returns:
|
155 |
+
xq_out, xk_out: tensors of shape (..., num_heads, head_dim)
|
156 |
+
"""
|
157 |
+
_apply_rope_input_validation(xq, freqs_cis)
|
158 |
+
_apply_rope_input_validation(xk, freqs_cis)
|
159 |
+
|
160 |
+
freqs_cis = freqs_cis.unsqueeze(-2) # ..., 1, head_dim/2
|
161 |
+
# ..., num_heads, head_dim/2
|
162 |
+
xq_ = torch.view_as_complex(xq.float().view(*xq.shape[:-1], -1, 2))
|
163 |
+
xk_ = torch.view_as_complex(xk.float().view(*xq.shape[:-1], -1, 2))
|
164 |
+
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(-2) # ..., num_heads, head_dim
|
165 |
+
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(-2) # ..., num_heads, head_dim
|
166 |
+
return xq_out.type_as(xq), xk_out.type_as(xk)
|
167 |
+
|
168 |
+
|
169 |
+
class Learnable2DInterpPosEmb(nn.Module):
|
170 |
+
def __init__(
|
171 |
+
self, height: int, width: int, dim: int, interpolation_mode: str = "bicubic"
|
172 |
+
) -> None:
|
173 |
+
super().__init__()
|
174 |
+
self.height = height
|
175 |
+
self.width = width
|
176 |
+
self.interpolation_mode = interpolation_mode
|
177 |
+
self.weight = nn.Parameter(torch.empty(height, width, dim))
|
178 |
+
self.reset_parameters()
|
179 |
+
|
180 |
+
def reset_parameters(self):
|
181 |
+
nn.init.normal_(self.weight)
|
182 |
+
|
183 |
+
def forward(self, x: torch.Tensor, grid_hws: torch.Tensor) -> torch.Tensor:
|
184 |
+
pos_embs = []
|
185 |
+
for shape in grid_hws.tolist():
|
186 |
+
if shape == self.weight.shape[:-1]:
|
187 |
+
pos_embs.append(self.weight.flatten(end_dim=1))
|
188 |
+
else:
|
189 |
+
pos_embs.append(
|
190 |
+
F.interpolate(
|
191 |
+
self.weight.permute((2, 0, 1)).unsqueeze(0),
|
192 |
+
size=shape,
|
193 |
+
mode=self.interpolation_mode,
|
194 |
+
)
|
195 |
+
.squeeze(0)
|
196 |
+
.permute((1, 2, 0))
|
197 |
+
.flatten(end_dim=1)
|
198 |
+
)
|
199 |
+
out = x + torch.cat(pos_embs)
|
200 |
+
return out
|
201 |
+
|
202 |
+
|
203 |
+
class MoonVisionPatchEmbed(nn.Module):
|
204 |
+
|
205 |
+
def __init__(
|
206 |
+
self,
|
207 |
+
out_dim: int,
|
208 |
+
in_dim: int = 3,
|
209 |
+
patch_size: Union[int, Tuple[int, int]] = (14, 14),
|
210 |
+
pos_emb_height: int = 14,
|
211 |
+
pos_emb_width: int = 14,
|
212 |
+
):
|
213 |
+
super().__init__()
|
214 |
+
assert isinstance(
|
215 |
+
patch_size, (int, Sequence)
|
216 |
+
), f"Invalid patch_size type: {type(patch_size)}"
|
217 |
+
if isinstance(patch_size, int):
|
218 |
+
patch_size = (patch_size, patch_size)
|
219 |
+
assert (
|
220 |
+
len(patch_size) == 2
|
221 |
+
), f"Expected patch_size to be a tuple of 2, got {patch_size}"
|
222 |
+
self.patch_size = patch_size
|
223 |
+
|
224 |
+
self.proj = nn.Conv2d(
|
225 |
+
in_dim, out_dim, kernel_size=patch_size, stride=patch_size
|
226 |
+
)
|
227 |
+
|
228 |
+
self.pos_emb = Learnable2DInterpPosEmb(
|
229 |
+
height=pos_emb_height, width=pos_emb_width, dim=out_dim
|
230 |
+
)
|
231 |
+
|
232 |
+
def forward(self, x: torch.Tensor, grid_hws: torch.Tensor) -> torch.Tensor:
|
233 |
+
"""
|
234 |
+
Args:
|
235 |
+
x (L, Channels): input tensor
|
236 |
+
grid_hws (N, 2): grid height and width
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
(L, Cout) tensor
|
240 |
+
"""
|
241 |
+
x = self.proj(x).view(x.size(0), -1)
|
242 |
+
# apply positional embedding
|
243 |
+
x = self.pos_emb(x, grid_hws)
|
244 |
+
return x
|
245 |
+
|
246 |
+
|
247 |
+
class Rope2DPosEmb(nn.Module):
|
248 |
+
"""2D rotary position embedding with multi-resolution support.
|
249 |
+
|
250 |
+
This class is intended to be used in the following way:
|
251 |
+
1. Before training, create an instance of Rope2DPosEmb. This instance will hold the precomputed cis.
|
252 |
+
2. Before each forward pass, call `get_freqs_cis_by_*` to get the `freqs_cis` tensor for this iteration.
|
253 |
+
3. During the forward pass, pass the `freqs_cis` tensor to each attention layer, and call `apply` just before each attention operation.
|
254 |
+
The rope is shared across all attention layers and all heads.
|
255 |
+
|
256 |
+
Refs:
|
257 |
+
- RoFormer: https://arxiv.org/abs/2104.09864
|
258 |
+
- VisionLLaMA: https://arxiv.org/abs/2403.00522
|
259 |
+
- https://github.com/Meituan-AutoML/VisionLLaMA/blob/main/dit/models.py
|
260 |
+
|
261 |
+
Args:
|
262 |
+
dim (int): usually the multi-head attention dimension, should be divisible by 4 (TODO: relax this constraint if needed)
|
263 |
+
max_height (int): the maximum height of the 2D grid
|
264 |
+
max_width (int): the maximum width of the 2D grid
|
265 |
+
theta_base (float): the base of the theta
|
266 |
+
device (str): the device to store the precomputed cis
|
267 |
+
"""
|
268 |
+
|
269 |
+
def __init__(self, dim: int, max_height: int, max_width: int, theta_base=10000):
|
270 |
+
super().__init__()
|
271 |
+
self.dim = dim
|
272 |
+
assert self.dim % 4 == 0, "dim must be divisible by 4"
|
273 |
+
self.max_height = max_height
|
274 |
+
self.max_width = max_width
|
275 |
+
self.theta_base = theta_base
|
276 |
+
|
277 |
+
self.freqs_cis = None
|
278 |
+
|
279 |
+
def extra_repr(self):
|
280 |
+
return f"dim={self.dim}, max_height={self.max_height}, max_width={self.max_width}, theta_base={self.theta_base}"
|
281 |
+
|
282 |
+
def _precompute_freqs_cis(self, device: torch.device) -> torch.Tensor:
|
283 |
+
"""Calculate the cis(freqs) for each position in the 2D grid.
|
284 |
+
|
285 |
+
Return: complex tensor of shape (max_height, max_width, dim//2) and value:
|
286 |
+
height axis: ret[h, w, 2*i] = cis(h * theta_base**(-4*i/dim))
|
287 |
+
weight axis: ret[h, w, 2*i+1] = cis(w * theta_base**(-4*i/dim)) with (i in [0, dim//4))
|
288 |
+
note: `cis` is a mathematical notation defined by cis x = cos x + i sin x,
|
289 |
+
"""
|
290 |
+
N = self.max_height * self.max_width
|
291 |
+
flat_pos = torch.arange(0, N).float().to(device)
|
292 |
+
x_pos = flat_pos % self.max_width
|
293 |
+
y_pos = flat_pos // self.max_width
|
294 |
+
dim_range = (
|
295 |
+
torch.arange(0, self.dim, 4)[: (self.dim // 4)].float().to(device)
|
296 |
+
) # C/4
|
297 |
+
freqs = 1.0 / (self.theta_base ** (dim_range / self.dim))
|
298 |
+
x_freqs = torch.outer(x_pos, freqs).float() # N, C/4
|
299 |
+
y_freqs = torch.outer(y_pos, freqs).float() # N, C/4
|
300 |
+
x_cis = torch.polar(torch.ones_like(x_freqs), x_freqs) # N, C/4
|
301 |
+
y_cis = torch.polar(torch.ones_like(y_freqs), y_freqs) # N, C/4
|
302 |
+
# N, C/4, 2
|
303 |
+
freqs_cis = torch.cat(
|
304 |
+
[x_cis.unsqueeze(dim=-1), y_cis.unsqueeze(dim=-1)], dim=-1
|
305 |
+
)
|
306 |
+
# max_height, max_width, C/2
|
307 |
+
freqs_cis = freqs_cis.reshape(self.max_height, self.max_width, -1)
|
308 |
+
return freqs_cis
|
309 |
+
|
310 |
+
def get_freqs_cis(self, grid_hws: torch.Tensor) -> torch.Tensor:
|
311 |
+
"""
|
312 |
+
Args:
|
313 |
+
grid_hws (torch.Tensor): grid height and width
|
314 |
+
|
315 |
+
Returns:
|
316 |
+
freqs_cis: tensor of shape (sum(t * height * width), dim//2)
|
317 |
+
"""
|
318 |
+
if self.freqs_cis is None:
|
319 |
+
self.freqs_cis = self._precompute_freqs_cis(grid_hws.device)
|
320 |
+
|
321 |
+
shapes = grid_hws.tolist()
|
322 |
+
assert all(
|
323 |
+
1 <= h <= self.max_height and 1 <= w <= self.max_width for h, w in shapes
|
324 |
+
), (
|
325 |
+
shapes,
|
326 |
+
self.max_height,
|
327 |
+
self.max_width,
|
328 |
+
)
|
329 |
+
freqs_cis = torch.cat(
|
330 |
+
[self.freqs_cis[:h, :w].reshape(-1, self.dim // 2) for h, w in shapes],
|
331 |
+
dim=0,
|
332 |
+
)
|
333 |
+
return freqs_cis
|
334 |
+
|
335 |
+
|
336 |
+
class MLP2(nn.Module):
|
337 |
+
"""
|
338 |
+
Args:
|
339 |
+
dims: [in_dim, hidden_dim, out_dim]
|
340 |
+
bias: whether to use bias in linear layer.
|
341 |
+
"""
|
342 |
+
|
343 |
+
def __init__(self, dims: list[int], activation, bias=True):
|
344 |
+
super().__init__()
|
345 |
+
assert len(dims) == 3
|
346 |
+
self.fc0 = nn.Linear(dims[0], dims[1], bias=bias)
|
347 |
+
self.fc1 = nn.Linear(dims[1], dims[2], bias=bias)
|
348 |
+
self.activation = activation
|
349 |
+
for m in [self.fc0, self.fc1]:
|
350 |
+
nn.init.trunc_normal_(m.weight, std=math.sqrt(2 / m.in_features))
|
351 |
+
if m.bias is not None:
|
352 |
+
nn.init.zeros_(m.bias)
|
353 |
+
|
354 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
355 |
+
x = self.fc0(x)
|
356 |
+
x = self.activation(x)
|
357 |
+
return self.fc1(x)
|
358 |
+
|
359 |
+
|
360 |
+
class MoonVitEncoderLayer(nn.Module):
|
361 |
+
|
362 |
+
def __init__(
|
363 |
+
self,
|
364 |
+
num_heads: int,
|
365 |
+
hidden_dim: int,
|
366 |
+
mlp_dim: int,
|
367 |
+
*,
|
368 |
+
attn_implementation: str = "eager",
|
369 |
+
activation=F.gelu,
|
370 |
+
attn_bias: bool = False,
|
371 |
+
):
|
372 |
+
super().__init__()
|
373 |
+
self.num_heads = num_heads
|
374 |
+
self.hidden_dim = hidden_dim
|
375 |
+
self.hidden_size_per_attention_head = self.hidden_dim // self.num_heads
|
376 |
+
self.attn_implementation = attn_implementation
|
377 |
+
|
378 |
+
self.norm0 = nn.LayerNorm(hidden_dim)
|
379 |
+
self.norm1 = nn.LayerNorm(hidden_dim)
|
380 |
+
self.mlp = MLP2([hidden_dim, mlp_dim, hidden_dim], activation)
|
381 |
+
self.wqkv = nn.Linear(hidden_dim, hidden_dim * 3, bias=attn_bias)
|
382 |
+
self.wo = nn.Linear(hidden_dim, hidden_dim, bias=attn_bias)
|
383 |
+
|
384 |
+
def attention_qkvpacked(
|
385 |
+
self,
|
386 |
+
x: torch.Tensor,
|
387 |
+
cu_seqlens: torch.Tensor,
|
388 |
+
rope_freqs_cis: Optional[torch.Tensor] = None,
|
389 |
+
):
|
390 |
+
"""
|
391 |
+
Args:
|
392 |
+
x (torch.Tensor): (batch_size, seqlen, hidden_dim)
|
393 |
+
cu_seqlens (torch.Tensor):
|
394 |
+
"""
|
395 |
+
xqkv = self.wqkv(x)
|
396 |
+
|
397 |
+
qkv_shape = xqkv.size()[:-1] + (
|
398 |
+
3,
|
399 |
+
self.num_heads,
|
400 |
+
self.hidden_size_per_attention_head,
|
401 |
+
)
|
402 |
+
# xqkv: (batch_size, seqlen, 3, nheads, headdim)
|
403 |
+
xqkv = xqkv.view(*qkv_shape)
|
404 |
+
xq, xk, xv = torch.unbind(xqkv, dim=-3)
|
405 |
+
|
406 |
+
xq, xk = apply_rope(xq, xk, rope_freqs_cis)
|
407 |
+
|
408 |
+
attn_func = VL_VISION_ATTENTION_FUNCTIONS[self.attn_implementation]
|
409 |
+
attn_out = attn_func(
|
410 |
+
xq, xk, xv, q_cu_seqlens=cu_seqlens, k_cu_seqlens=cu_seqlens
|
411 |
+
)
|
412 |
+
|
413 |
+
attn_out = self.wo(attn_out)
|
414 |
+
return attn_out
|
415 |
+
|
416 |
+
def forward(
|
417 |
+
self,
|
418 |
+
hidden_states: torch.Tensor,
|
419 |
+
cu_seqlens: torch.Tensor,
|
420 |
+
rope_freqs_cis: Union[torch.Tensor, None] = None,
|
421 |
+
) -> torch.Tensor:
|
422 |
+
"""
|
423 |
+
Args:
|
424 |
+
hidden_states: non-packed (B, N, D) or packed (L, D). if non-packed, seqlens should be None, if packed, seqlens should be set
|
425 |
+
|
426 |
+
Returns:
|
427 |
+
output: same shape of input, non-packed (B, N, D) for non-packed input, (L, D) for packed input
|
428 |
+
"""
|
429 |
+
residual = hidden_states
|
430 |
+
hidden_states = self.norm0(hidden_states)
|
431 |
+
attn_out = self.attention_qkvpacked(
|
432 |
+
hidden_states, cu_seqlens, rope_freqs_cis=rope_freqs_cis
|
433 |
+
)
|
434 |
+
hidden_states = residual + attn_out
|
435 |
+
|
436 |
+
residual = hidden_states
|
437 |
+
hidden_states = self.mlp(self.norm1(hidden_states))
|
438 |
+
hidden_states = residual + hidden_states
|
439 |
+
return hidden_states
|
440 |
+
|
441 |
+
|
442 |
+
class MoonVitEncoder(nn.Module):
|
443 |
+
|
444 |
+
def __init__(
|
445 |
+
self,
|
446 |
+
hidden_dim: int,
|
447 |
+
num_layers: int,
|
448 |
+
block_cfg: dict,
|
449 |
+
) -> None:
|
450 |
+
super().__init__()
|
451 |
+
|
452 |
+
self.rope_2d = Rope2DPosEmb(
|
453 |
+
block_cfg["hidden_dim"] // block_cfg["num_heads"], 512, 512
|
454 |
+
)
|
455 |
+
self.blocks = nn.ModuleList(
|
456 |
+
[MoonVitEncoderLayer(**block_cfg) for _ in range(num_layers)]
|
457 |
+
)
|
458 |
+
self.final_layernorm = nn.LayerNorm(hidden_dim)
|
459 |
+
|
460 |
+
def forward(
|
461 |
+
self, hidden_states: torch.Tensor, grid_hws: torch.Tensor
|
462 |
+
) -> torch.Tensor:
|
463 |
+
rope_freqs_cis = self.rope_2d.get_freqs_cis(grid_hws=grid_hws)
|
464 |
+
|
465 |
+
lengths = torch.cat(
|
466 |
+
(
|
467 |
+
torch.zeros(1, device=hidden_states.device, dtype=grid_hws.dtype),
|
468 |
+
grid_hws[:, 0] * grid_hws[:, 1],
|
469 |
+
)
|
470 |
+
)
|
471 |
+
cu_seqlens = lengths.cumsum(dim=0, dtype=torch.int32)
|
472 |
+
|
473 |
+
for _, block in enumerate(self.blocks):
|
474 |
+
hidden_states = block(
|
475 |
+
hidden_states, cu_seqlens, rope_freqs_cis=rope_freqs_cis
|
476 |
+
)
|
477 |
+
|
478 |
+
hidden_states = self.final_layernorm(hidden_states)
|
479 |
+
|
480 |
+
return hidden_states
|
481 |
+
|
482 |
+
|
483 |
+
def patch_merger(
|
484 |
+
x: torch.Tensor,
|
485 |
+
grid_hws: torch.Tensor,
|
486 |
+
merge_kernel_size: list[int, int] = (2, 2),
|
487 |
+
) -> List[torch.Tensor]:
|
488 |
+
d_model = x.size(-1)
|
489 |
+
|
490 |
+
outputs = []
|
491 |
+
pre_sum = 0
|
492 |
+
for x_shape in grid_hws.tolist():
|
493 |
+
height, width = x_shape[0], x_shape[1]
|
494 |
+
# Get the current sequence
|
495 |
+
seq = x[pre_sum : pre_sum + height * width]
|
496 |
+
# Reshape along self.merge_kernel_size and concat to the last dimension
|
497 |
+
kernel_height, kernel_width = merge_kernel_size
|
498 |
+
new_height, new_width = height // kernel_height, width // kernel_width
|
499 |
+
reshaped_seq = seq.view(
|
500 |
+
new_height, kernel_height, new_width, kernel_width, d_model
|
501 |
+
)
|
502 |
+
reshaped_seq = reshaped_seq.permute(0, 2, 1, 3, 4).contiguous()
|
503 |
+
padded_seq = reshaped_seq.view(
|
504 |
+
new_height * new_width, kernel_height * kernel_width, -1
|
505 |
+
)
|
506 |
+
outputs.append(padded_seq)
|
507 |
+
pre_sum += height * width
|
508 |
+
|
509 |
+
return outputs
|
510 |
+
|
511 |
+
|
512 |
+
class MoonVitPretrainedModel(PreTrainedModel):
|
513 |
+
config_class = MoonViTConfig
|
514 |
+
model_type = "moonvit"
|
515 |
+
_no_split_modules = ["PackingTransformer"]
|
516 |
+
_supports_flash_attn_2 = True
|
517 |
+
_supports_sdpa = True
|
518 |
+
|
519 |
+
def __init__(self, config: MoonViTConfig, *inputs, **kwargs):
|
520 |
+
super().__init__(config, *inputs, **kwargs)
|
521 |
+
config = deepcopy(config)
|
522 |
+
self.merge_kernel_size = config.merge_kernel_size
|
523 |
+
self.patch_size = config.patch_size
|
524 |
+
self.patch_embed = MoonVisionPatchEmbed(
|
525 |
+
out_dim=config.hidden_size,
|
526 |
+
patch_size=config.patch_size,
|
527 |
+
pos_emb_height=config.init_pos_emb_height,
|
528 |
+
pos_emb_width=config.init_pos_emb_width,
|
529 |
+
)
|
530 |
+
|
531 |
+
self.encoder = MoonVitEncoder(
|
532 |
+
hidden_dim=config.hidden_size,
|
533 |
+
num_layers=config.num_hidden_layers,
|
534 |
+
block_cfg={
|
535 |
+
"num_heads": config.num_attention_heads,
|
536 |
+
"hidden_dim": config.hidden_size,
|
537 |
+
"mlp_dim": config.intermediate_size,
|
538 |
+
"activation": PytorchGELUTanh(),
|
539 |
+
"attn_bias": True,
|
540 |
+
"attn_implementation": config._attn_implementation,
|
541 |
+
},
|
542 |
+
)
|
543 |
+
|
544 |
+
def forward(
|
545 |
+
self, pixel_values: torch.Tensor, grid_hws: torch.Tensor
|
546 |
+
) -> torch.Tensor:
|
547 |
+
"""
|
548 |
+
Args:
|
549 |
+
pixel_values (torch.Tensor): The input pixel values.
|
550 |
+
grid_hws (torch.Tensor): The grid height and width.
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
torch.Tensor: The output tokens.
|
554 |
+
"""
|
555 |
+
hidden_states = self.patch_embed(pixel_values, grid_hws)
|
556 |
+
hidden_states = self.encoder(hidden_states, grid_hws)
|
557 |
+
hidden_states = patch_merger(
|
558 |
+
hidden_states, grid_hws, merge_kernel_size=self.merge_kernel_size
|
559 |
+
)
|
560 |
+
return hidden_states
|
preprocessor_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoImageProcessor": "image_processing_moonvit.MoonViTImageProcessor"
|
4 |
+
},
|
5 |
+
"in_token_limit": 4096,
|
6 |
+
"patch_size": 14,
|
7 |
+
"num_pooled_tokens": 1024,
|
8 |
+
"image_mean": [
|
9 |
+
0.5,
|
10 |
+
0.5,
|
11 |
+
0.5
|
12 |
+
],
|
13 |
+
"image_std": [
|
14 |
+
0.5,
|
15 |
+
0.5,
|
16 |
+
0.5
|
17 |
+
],
|
18 |
+
"pad_input": true
|
19 |
+
}
|