Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,118 +1,35 @@
|
|
1 |
---
|
2 |
-
library_name: transformers
|
3 |
-
license: apache-2.0
|
4 |
base_model: openai/whisper-small
|
5 |
-
tags:
|
6 |
-
- generated_from_trainer
|
7 |
datasets:
|
8 |
-
- common_voice_17_0
|
9 |
-
|
10 |
-
|
|
|
11 |
model-index:
|
12 |
-
- name: whisper-small
|
13 |
results:
|
14 |
- task:
|
15 |
-
name: Automatic Speech Recognition
|
16 |
type: automatic-speech-recognition
|
|
|
17 |
dataset:
|
18 |
-
name:
|
19 |
-
type:
|
20 |
-
config: el
|
21 |
-
split: None
|
22 |
-
args: el
|
23 |
metrics:
|
24 |
-
-
|
25 |
-
|
26 |
-
value: 30.64381658175081
|
27 |
---
|
28 |
|
29 |
-
|
30 |
-
should probably proofread and complete it, then remove this comment. -->
|
31 |
-
|
32 |
-
# whisper-small-el
|
33 |
-
|
34 |
-
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_17_0 dataset.
|
35 |
-
It achieves the following results on the evaluation set:
|
36 |
-
- Loss: 0.3865
|
37 |
-
- Model Preparation Time: 0.0041
|
38 |
-
- Wer: 30.6438
|
39 |
-
|
40 |
-
## Model description
|
41 |
-
|
42 |
-
More information needed
|
43 |
-
|
44 |
-
## Intended uses & limitations
|
45 |
-
|
46 |
-
More information needed
|
47 |
-
|
48 |
-
## Training and evaluation data
|
49 |
-
|
50 |
-
More information needed
|
51 |
-
|
52 |
-
## Training procedure
|
53 |
-
|
54 |
-
### Training hyperparameters
|
55 |
-
|
56 |
-
The following hyperparameters were used during training:
|
57 |
-
- learning_rate: 1e-05
|
58 |
-
- train_batch_size: 24
|
59 |
-
- eval_batch_size: 8
|
60 |
-
- seed: 42
|
61 |
-
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
62 |
-
- lr_scheduler_type: linear
|
63 |
-
- lr_scheduler_warmup_steps: 50
|
64 |
-
- training_steps: 2000
|
65 |
-
- mixed_precision_training: Native AMP
|
66 |
-
|
67 |
-
### Training results
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
| 0.5511 | 0.3311 | 50 | 0.3685 | 0.0041 | 39.3516 |
|
72 |
-
| 0.3132 | 0.6623 | 100 | 0.3168 | 0.0041 | 35.6276 |
|
73 |
-
| 0.2709 | 0.9934 | 150 | 0.2897 | 0.0041 | 33.4785 |
|
74 |
-
| 0.1634 | 1.3245 | 200 | 0.2829 | 0.0041 | 33.1450 |
|
75 |
-
| 0.1551 | 1.6556 | 250 | 0.2746 | 0.0041 | 32.5614 |
|
76 |
-
| 0.1559 | 1.9868 | 300 | 0.2683 | 0.0041 | 31.8481 |
|
77 |
-
| 0.0818 | 2.3179 | 350 | 0.2735 | 0.0041 | 31.3942 |
|
78 |
-
| 0.0808 | 2.6490 | 400 | 0.2735 | 0.0041 | 31.9592 |
|
79 |
-
| 0.0799 | 2.9801 | 450 | 0.2765 | 0.0041 | 32.4595 |
|
80 |
-
| 0.0451 | 3.3113 | 500 | 0.2922 | 0.0041 | 31.4590 |
|
81 |
-
| 0.0436 | 3.6424 | 550 | 0.2892 | 0.0041 | 31.0514 |
|
82 |
-
| 0.0436 | 3.9735 | 600 | 0.2902 | 0.0041 | 31.3942 |
|
83 |
-
| 0.0241 | 4.3046 | 650 | 0.3117 | 0.0041 | 31.2552 |
|
84 |
-
| 0.0212 | 4.6358 | 700 | 0.3162 | 0.0041 | 31.0699 |
|
85 |
-
| 0.0226 | 4.9669 | 750 | 0.3172 | 0.0041 | 30.8754 |
|
86 |
-
| 0.0127 | 5.2980 | 800 | 0.3521 | 0.0041 | 32.5336 |
|
87 |
-
| 0.0125 | 5.6291 | 850 | 0.3432 | 0.0041 | 31.1996 |
|
88 |
-
| 0.0123 | 5.9603 | 900 | 0.3463 | 0.0041 | 31.4034 |
|
89 |
-
| 0.0077 | 6.2914 | 950 | 0.3764 | 0.0041 | 31.0699 |
|
90 |
-
| 0.0071 | 6.6225 | 1000 | 0.3607 | 0.0041 | 32.4317 |
|
91 |
-
| 0.0062 | 6.9536 | 1050 | 0.3698 | 0.0041 | 30.8754 |
|
92 |
-
| 0.0045 | 7.2848 | 1100 | 0.3758 | 0.0041 | 30.9588 |
|
93 |
-
| 0.0035 | 7.6159 | 1150 | 0.3865 | 0.0041 | 30.6438 |
|
94 |
-
| 0.0038 | 7.9470 | 1200 | 0.3856 | 0.0041 | 31.2830 |
|
95 |
-
| 0.0027 | 8.2781 | 1250 | 0.3800 | 0.0041 | 30.8569 |
|
96 |
-
| 0.0021 | 8.6093 | 1300 | 0.3858 | 0.0041 | 30.6901 |
|
97 |
-
| 0.0022 | 8.9404 | 1350 | 0.3949 | 0.0041 | 31.1996 |
|
98 |
-
| 0.0017 | 9.2715 | 1400 | 0.4020 | 0.0041 | 30.7920 |
|
99 |
-
| 0.0016 | 9.6026 | 1450 | 0.4061 | 0.0041 | 30.9588 |
|
100 |
-
| 0.0016 | 9.9338 | 1500 | 0.4111 | 0.0041 | 31.0514 |
|
101 |
-
| 0.0014 | 10.2649 | 1550 | 0.4067 | 0.0041 | 31.1996 |
|
102 |
-
| 0.0013 | 10.5960 | 1600 | 0.4093 | 0.0041 | 31.0144 |
|
103 |
-
| 0.0013 | 10.9272 | 1650 | 0.4112 | 0.0041 | 30.8661 |
|
104 |
-
| 0.0012 | 11.2583 | 1700 | 0.4126 | 0.0041 | 30.9680 |
|
105 |
-
| 0.0012 | 11.5894 | 1750 | 0.4134 | 0.0041 | 30.9588 |
|
106 |
-
| 0.0012 | 11.9205 | 1800 | 0.4145 | 0.0041 | 30.9217 |
|
107 |
-
| 0.0011 | 12.2517 | 1850 | 0.4155 | 0.0041 | 30.8384 |
|
108 |
-
| 0.0011 | 12.5828 | 1900 | 0.4160 | 0.0041 | 30.8939 |
|
109 |
-
| 0.0011 | 12.9139 | 1950 | 0.4163 | 0.0041 | 30.8754 |
|
110 |
-
| 0.0011 | 13.2450 | 2000 | 0.4164 | 0.0041 | 30.8754 |
|
111 |
|
|
|
112 |
|
113 |
-
###
|
|
|
|
|
114 |
|
115 |
-
|
116 |
-
-
|
117 |
-
-
|
118 |
-
- Tokenizers 0.21.0
|
|
|
1 |
---
|
|
|
|
|
2 |
base_model: openai/whisper-small
|
|
|
|
|
3 |
datasets:
|
4 |
+
- mozilla-foundation/common_voice_17_0
|
5 |
+
language: el
|
6 |
+
library_name: transformers
|
7 |
+
license: apache-2.0
|
8 |
model-index:
|
9 |
+
- name: Finetuned openai/whisper-small on Greek
|
10 |
results:
|
11 |
- task:
|
|
|
12 |
type: automatic-speech-recognition
|
13 |
+
name: Speech-to-Text
|
14 |
dataset:
|
15 |
+
name: Common Voice (Greek)
|
16 |
+
type: common_voice
|
|
|
|
|
|
|
17 |
metrics:
|
18 |
+
- type: wer
|
19 |
+
value: 30.644
|
|
|
20 |
---
|
21 |
|
22 |
+
# Finetuned openai/whisper-small on 3620 Greek training audio samples from mozilla-foundation/common_voice_17_0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
This model was created from the Mozilla.ai Blueprint:
|
25 |
+
[speech-to-text-finetune](https://github.com/mozilla-ai/speech-to-text-finetune).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
## Evaluation results on 1701 audio samples of Greek:
|
28 |
|
29 |
+
### Baseline model (before finetuning) on Greek
|
30 |
+
- Word Error Rate: 46.401
|
31 |
+
- Loss: 0.902
|
32 |
|
33 |
+
### Finetuned model (after finetuning) on Greek
|
34 |
+
- Word Error Rate: 30.644
|
35 |
+
- Loss: 0.387
|
|