3outeille's picture
3outeille HF Staff
Upload llama-1B/64_GPUS/dp-2_tp-16_pp-2_mbz-1
1bd66ec verified
raw
history blame contribute delete
176 kB
========================
START TIME: Sat Jul 6 09:21:02 UTC 2024
python3 version = Python 3.10.14
========================
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: write).
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
Login successful
Already on 'bench_cluster'
M examples/config_tiny_llama.py
M examples/config_tiny_llama.yaml
M examples/train_tiny_llama.sh
Your branch is up to date with 'origin/bench_cluster'.
Job status: RUNNING
[2024-07-06 09:21:05,385] torch.distributed.run: [WARNING]
[2024-07-06 09:21:05,385] torch.distributed.run: [WARNING] *****************************************
[2024-07-06 09:21:05,385] torch.distributed.run: [WARNING] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
[2024-07-06 09:21:05,385] torch.distributed.run: [WARNING] *****************************************
[2024-07-06 09:21:05,392] torch.distributed.run: [WARNING]
[2024-07-06 09:21:05,392] torch.distributed.run: [WARNING] *****************************************
[2024-07-06 09:21:05,392] torch.distributed.run: [WARNING] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
[2024-07-06 09:21:05,392] torch.distributed.run: [WARNING] *****************************************
[2024-07-06 09:21:05,396] torch.distributed.run: [WARNING]
[2024-07-06 09:21:05,396] torch.distributed.run: [WARNING] *****************************************
[2024-07-06 09:21:05,396] torch.distributed.run: [WARNING] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
[2024-07-06 09:21:05,396] torch.distributed.run: [WARNING] *****************************************
[2024-07-06 09:21:05,410] torch.distributed.run: [WARNING]
[2024-07-06 09:21:05,410] torch.distributed.run: [WARNING] *****************************************
[2024-07-06 09:21:05,410] torch.distributed.run: [WARNING] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
[2024-07-06 09:21:05,410] torch.distributed.run: [WARNING] *****************************************
[2024-07-06 09:21:05,416] torch.distributed.run: [WARNING]
[2024-07-06 09:21:05,416] torch.distributed.run: [WARNING] *****************************************
[2024-07-06 09:21:05,416] torch.distributed.run: [WARNING] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
[2024-07-06 09:21:05,416] torch.distributed.run: [WARNING] *****************************************
[2024-07-06 09:21:05,414] torch.distributed.run: [WARNING]
[2024-07-06 09:21:05,414] torch.distributed.run: [WARNING] *****************************************
[2024-07-06 09:21:05,414] torch.distributed.run: [WARNING] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
[2024-07-06 09:21:05,414] torch.distributed.run: [WARNING] *****************************************
[2024-07-06 09:21:05,491] torch.distributed.run: [WARNING]
[2024-07-06 09:21:05,491] torch.distributed.run: [WARNING] *****************************************
[2024-07-06 09:21:05,491] torch.distributed.run: [WARNING] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
[2024-07-06 09:21:05,491] torch.distributed.run: [WARNING] *****************************************
[2024-07-06 09:21:05,526] torch.distributed.run: [WARNING]
[2024-07-06 09:21:05,526] torch.distributed.run: [WARNING] *****************************************
[2024-07-06 09:21:05,526] torch.distributed.run: [WARNING] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
[2024-07-06 09:21:05,526] torch.distributed.run: [WARNING] *****************************************
[default0]:07/06/2024 09:21:22 [WARNING|DP=0|PP=0|TP=0|ip-26-0-163-134]: [Vocab Size Padding] Padded vocab (size: 50257) with 15 dummy tokens (new size: 50272)
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: Config:
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: Config(general=GeneralArgs(project='bench_cluster',
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: run='%date_%jobid',
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: seed=42,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: step=None,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: consumed_train_samples=None,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: benchmark_csv_path=None,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: ignore_sanity_checks=True),
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: parallelism=ParallelismArgs(dp=2,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: pp=2,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: tp=16,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: pp_engine=<nanotron.parallel.pipeline_parallel.engine.AllForwardAllBackwardPipelineEngine object at 0x7fb0bb3e0730>,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: tp_linear_async_communication=False,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: expert_parallel_size=1),
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: eos_token_id=2,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: hidden_act='silu',
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: hidden_size=2048,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: initializer_range=0.02,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: intermediate_size=4096,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: is_llama_config=True,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: max_position_embeddings=4096,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: num_attention_heads=32,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: num_hidden_layers=24,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: num_key_value_heads=32,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: pad_token_id=None,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: pretraining_tp=1,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: rms_norm_eps=1e-05,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: rope_scaling=None,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: rope_theta=10000.0,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: tie_word_embeddings=True,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: use_cache=True,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: vocab_size=50272),
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: init_method=RandomInit(std=0.025),
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: dtype=torch.bfloat16,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: make_vocab_size_divisible_by=1,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: ddp_bucket_cap_mb=25),
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: tokenizer_revision=None,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: tokenizer_max_length=None),
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: checkpoints=CheckpointsArgs(checkpoints_path=PosixPath('/dev/null'),
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: checkpoint_interval=100000,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: save_initial_state=False,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: resume_checkpoint_path=None,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: checkpoints_path_is_shared_file_system=False),
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: logging=LoggingArgs(log_level='info',
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: log_level_replica='info',
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: iteration_step_info_interval=1),
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: tokens=TokensArgs(sequence_length=4096,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: train_steps=20,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: micro_batch_size=1,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: batch_accumulation_per_replica=512,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: val_check_interval=-1,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: limit_val_batches=0,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: limit_test_batches=0),
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: adam_beta1=0.9,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: adam_beta2=0.95,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: torch_adam_is_fused=True,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: name='adamW'),
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: zero_stage=1,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: weight_decay=0.01,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: clip_grad=1.0,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: accumulate_grad_in_fp32=True,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: lr_warmup_steps=1,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: lr_warmup_style='linear',
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: lr_decay_style='linear',
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: lr_decay_steps=19,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: lr_decay_starting_step=None,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: min_decay_lr=1e-05)),
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: data_stages=[DatasetStageArgs(name='Training Stage',
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: start_training_step=1,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: hf_dataset_splits='train',
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: hf_dataset_config_name=None,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: dataset_processing_num_proc_per_process=64,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: dataset_overwrite_cache=False,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: text_column_name='text'),
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: seed=42,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: num_loading_workers=0))],
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: profiler=ProfilerArgs(profiler_export_path=PosixPath('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/64_GPUS/dp-2_tp-16_pp-2_mbz-1')),
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: lighteval=None)
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: Model Config:
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: LlamaConfig(bos_token_id=1,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: eos_token_id=2,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: hidden_act='silu',
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: hidden_size=2048,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: initializer_range=0.02,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: intermediate_size=4096,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: is_llama_config=True,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: max_position_embeddings=4096,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: num_attention_heads=32,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: num_hidden_layers=24,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: num_key_value_heads=32,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: pad_token_id=None,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: pretraining_tp=1,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: rms_norm_eps=1e-05,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: rope_scaling=None,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: rope_theta=10000.0,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: tie_word_embeddings=True,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: use_cache=True,
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: vocab_size=50272)
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: Building model..
[default0]:07/06/2024 09:21:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: Setting PP block ranks...
[default4]:07/06/2024 09:21:40 [INFO|DP=1|PP=0|TP=4|ip-26-0-172-142]: No checkpoint path provided.
[default1]:07/06/2024 09:21:40 [INFO|DP=1|PP=0|TP=1|ip-26-0-172-142]: No checkpoint path provided.
[default6]:07/06/2024 09:21:40 [INFO|DP=1|PP=0|TP=6|ip-26-0-172-142]: No checkpoint path provided.
[default5]:07/06/2024 09:21:40 [INFO|DP=1|PP=0|TP=13|ip-26-0-172-147]: No checkpoint path provided.
[default0]:07/06/2024 09:21:40 [INFO|DP=1|PP=0|TP=0|ip-26-0-172-142]: No checkpoint path provided.
[default2]:07/06/2024 09:21:40 [INFO|DP=1|PP=0|TP=2|ip-26-0-172-142]: No checkpoint path provided.
[default5]:07/06/2024 09:21:40 [INFO|DP=1|PP=1|TP=13|ip-26-0-174-36]: No checkpoint path provided.
[default3]:07/06/2024 09:21:40 [INFO|DP=1|PP=0|TP=3|ip-26-0-172-142]: No checkpoint path provided.
[default7]:07/06/2024 09:21:40 [INFO|DP=1|PP=0|TP=7|ip-26-0-172-142]: No checkpoint path provided.
[default5]:07/06/2024 09:21:40 [INFO|DP=1|PP=0|TP=5|ip-26-0-172-142]: No checkpoint path provided.
[default1]:07/06/2024 09:21:40 [INFO|DP=1|PP=0|TP=9|ip-26-0-172-147]: No checkpoint path provided.
[default0]:07/06/2024 09:21:40 [INFO|DP=1|PP=0|TP=8|ip-26-0-172-147]: No checkpoint path provided.
[default6]:07/06/2024 09:21:40 [INFO|DP=1|PP=0|TP=14|ip-26-0-172-147]: No checkpoint path provided.
[default3]:07/06/2024 09:21:40 [INFO|DP=1|PP=1|TP=11|ip-26-0-174-36]: No checkpoint path provided.
[default3]:07/06/2024 09:21:40 [INFO|DP=1|PP=0|TP=11|ip-26-0-172-147]: No checkpoint path provided.
[default2]:07/06/2024 09:21:40 [INFO|DP=1|PP=1|TP=10|ip-26-0-174-36]: No checkpoint path provided.
[default3]:07/06/2024 09:21:40 [INFO|DP=1|PP=1|TP=3|ip-26-0-173-246]: No checkpoint path provided.
[default0]:07/06/2024 09:21:40 [INFO|DP=1|PP=1|TP=0|ip-26-0-173-246]: No checkpoint path provided.
[default6]:07/06/2024 09:21:40 [INFO|DP=1|PP=1|TP=14|ip-26-0-174-36]: No checkpoint path provided.
[default5]:07/06/2024 09:21:40 [INFO|DP=1|PP=1|TP=5|ip-26-0-173-246]: No checkpoint path provided.
[default2]:07/06/2024 09:21:40 [INFO|DP=1|PP=0|TP=10|ip-26-0-172-147]: No checkpoint path provided.
[default1]:07/06/2024 09:21:40 [INFO|DP=1|PP=1|TP=9|ip-26-0-174-36]: No checkpoint path provided.
[default4]:07/06/2024 09:21:40 [INFO|DP=1|PP=1|TP=12|ip-26-0-174-36]: No checkpoint path provided.
[default7]:07/06/2024 09:21:40 [INFO|DP=1|PP=1|TP=15|ip-26-0-174-36]: No checkpoint path provided.
[default7]:07/06/2024 09:21:40 [INFO|DP=1|PP=0|TP=15|ip-26-0-172-147]: No checkpoint path provided.
[default4]:07/06/2024 09:21:40 [INFO|DP=1|PP=0|TP=12|ip-26-0-172-147]: No checkpoint path provided.
[default0]:07/06/2024 09:21:40 [INFO|DP=1|PP=1|TP=8|ip-26-0-174-36]: No checkpoint path provided.
[default2]:07/06/2024 09:21:40 [INFO|DP=1|PP=1|TP=2|ip-26-0-173-246]: No checkpoint path provided.
[default6]:07/06/2024 09:21:40 [INFO|DP=1|PP=1|TP=6|ip-26-0-173-246]: No checkpoint path provided.
[default1]:07/06/2024 09:21:40 [INFO|DP=1|PP=1|TP=1|ip-26-0-173-246]: No checkpoint path provided.
[default7]:07/06/2024 09:21:40 [INFO|DP=1|PP=1|TP=7|ip-26-0-173-246]: No checkpoint path provided.
[default4]:07/06/2024 09:21:40 [INFO|DP=1|PP=1|TP=4|ip-26-0-173-246]: No checkpoint path provided.
[default0]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: Total number of parameters: 1.21G (2315.81MiB)
[default0]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: Local number of parameters: 43.2M (82.38MiB)
[default0]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: [After model building] Memory usage: 98.13MiB. Peak allocated: 100.16MiB Peak reserved: 112.00MiB
[default1]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=1|ip-26-0-172-252]: Local number of parameters: 32.7M (62.36MiB)
[default1]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=1|ip-26-0-172-252]: [After model building] Memory usage: 73.37MiB. Peak allocated: 75.40MiB Peak reserved: 82.00MiB
[default0]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=0|ip-26-0-172-252]: Local number of parameters: 32.7M (62.36MiB)
[default0]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=0|ip-26-0-172-252]: [After model building] Memory usage: 73.37MiB. Peak allocated: 75.40MiB Peak reserved: 82.00MiB
[default5]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=13|ip-26-0-163-147]: Local number of parameters: 43.2M (82.38MiB)
[default5]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=13|ip-26-0-163-147]: [After model building] Memory usage: 98.13MiB. Peak allocated: 100.16MiB Peak reserved: 112.00MiB
[default5]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=13|ip-26-0-163-147]: No checkpoint path provided.
[default4]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=12|ip-26-0-163-147]: Local number of parameters: 43.2M (82.38MiB)
[default4]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=12|ip-26-0-163-147]: [After model building] Memory usage: 98.13MiB. Peak allocated: 100.16MiB Peak reserved: 112.00MiB
[default4]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=12|ip-26-0-163-147]: No checkpoint path provided.
[default6]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=6|ip-26-0-172-252]: Local number of parameters: 32.7M (62.36MiB)
[default6]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=6|ip-26-0-172-252]: [After model building] Memory usage: 73.37MiB. Peak allocated: 75.40MiB Peak reserved: 82.00MiB
[default3]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=3|ip-26-0-172-252]: Local number of parameters: 32.7M (62.36MiB)
[default3]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=3|ip-26-0-172-252]: [After model building] Memory usage: 73.37MiB. Peak allocated: 75.40MiB Peak reserved: 82.00MiB
[default2]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=2|ip-26-0-172-252]: Local number of parameters: 32.7M (62.36MiB)
[default2]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=2|ip-26-0-172-252]: [After model building] Memory usage: 73.37MiB. Peak allocated: 75.40MiB Peak reserved: 82.00MiB
[default7]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=7|ip-26-0-172-252]: Local number of parameters: 32.7M (62.36MiB)
[default7]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=7|ip-26-0-172-252]: [After model building] Memory usage: 73.37MiB. Peak allocated: 75.40MiB Peak reserved: 82.00MiB
[default7]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=7|ip-26-0-172-252]: No checkpoint path provided.
[default4]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=4|ip-26-0-172-252]: Local number of parameters: 32.7M (62.36MiB)
[default4]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=4|ip-26-0-172-252]: [After model building] Memory usage: 73.37MiB. Peak allocated: 75.40MiB Peak reserved: 82.00MiB
[default4]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=4|ip-26-0-172-252]: No checkpoint path provided.
[default5]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=5|ip-26-0-172-252]: Local number of parameters: 32.7M (62.36MiB)
[default5]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=5|ip-26-0-172-252]: [After model building] Memory usage: 73.37MiB. Peak allocated: 75.40MiB Peak reserved: 82.00MiB
[default5]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=5|ip-26-0-172-252]: No checkpoint path provided.
[default5]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=5|ip-26-0-163-134]: Local number of parameters: 43.2M (82.38MiB)
[default5]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=5|ip-26-0-163-134]: [After model building] Memory usage: 98.13MiB. Peak allocated: 100.16MiB Peak reserved: 112.00MiB
[default5]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=5|ip-26-0-163-134]: No checkpoint path provided.
[default1]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=1|ip-26-0-163-134]: Local number of parameters: 43.2M (82.38MiB)
[default1]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=1|ip-26-0-163-134]: [After model building] Memory usage: 98.13MiB. Peak allocated: 100.16MiB Peak reserved: 112.00MiB
[default1]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=1|ip-26-0-163-134]: No checkpoint path provided.
[default2]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=2|ip-26-0-163-134]: Local number of parameters: 43.2M (82.38MiB)
[default2]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=2|ip-26-0-163-134]: [After model building] Memory usage: 98.13MiB. Peak allocated: 100.16MiB Peak reserved: 112.00MiB
[default4]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=4|ip-26-0-163-134]: Local number of parameters: 43.2M (82.38MiB)
[default4]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=4|ip-26-0-163-134]: [After model building] Memory usage: 98.13MiB. Peak allocated: 100.16MiB Peak reserved: 112.00MiB
[default4]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=4|ip-26-0-163-134]: No checkpoint path provided.
[default3]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=11|ip-26-0-173-202]: Local number of parameters: 32.7M (62.36MiB)
[default3]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=11|ip-26-0-173-202]: [After model building] Memory usage: 73.37MiB. Peak allocated: 75.40MiB Peak reserved: 82.00MiB
[default3]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=11|ip-26-0-173-202]: No checkpoint path provided.
[default2]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=2|ip-26-0-163-134]: No checkpoint path provided.
[default0]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=8|ip-26-0-173-202]: Local number of parameters: 32.7M (62.36MiB)
[default0]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=8|ip-26-0-173-202]: [After model building] Memory usage: 73.37MiB. Peak allocated: 75.40MiB Peak reserved: 82.00MiB
[default0]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=8|ip-26-0-173-202]: No checkpoint path provided.
[default2]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=10|ip-26-0-173-202]: Local number of parameters: 32.7M (62.36MiB)
[default2]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=10|ip-26-0-173-202]: [After model building] Memory usage: 73.37MiB. Peak allocated: 75.40MiB Peak reserved: 82.00MiB
[default2]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=10|ip-26-0-173-202]: No checkpoint path provided.
[default6]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=14|ip-26-0-173-202]: Local number of parameters: 32.7M (62.36MiB)
[default6]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=14|ip-26-0-173-202]: [After model building] Memory usage: 73.37MiB. Peak allocated: 75.40MiB Peak reserved: 82.00MiB
[default6]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=14|ip-26-0-173-202]: No checkpoint path provided.
[default4]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=12|ip-26-0-173-202]: Local number of parameters: 32.7M (62.36MiB)
[default4]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=12|ip-26-0-173-202]: [After model building] Memory usage: 73.37MiB. Peak allocated: 75.40MiB Peak reserved: 82.00MiB
[default4]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=12|ip-26-0-173-202]: No checkpoint path provided.
[default1]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=9|ip-26-0-173-202]: Local number of parameters: 32.7M (62.36MiB)
[default1]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=9|ip-26-0-173-202]: [After model building] Memory usage: 73.37MiB. Peak allocated: 75.40MiB Peak reserved: 82.00MiB
[default1]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=9|ip-26-0-173-202]: No checkpoint path provided.
[default5]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=13|ip-26-0-173-202]: Local number of parameters: 32.7M (62.36MiB)
[default5]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=13|ip-26-0-173-202]: [After model building] Memory usage: 73.37MiB. Peak allocated: 75.40MiB Peak reserved: 82.00MiB
[default7]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=15|ip-26-0-173-202]: Local number of parameters: 32.7M (62.36MiB)
[default5]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=13|ip-26-0-173-202]: No checkpoint path provided.
[default7]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=15|ip-26-0-173-202]: [After model building] Memory usage: 73.37MiB. Peak allocated: 75.40MiB Peak reserved: 82.00MiB
[default7]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=15|ip-26-0-173-202]: No checkpoint path provided.
[default6]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=14|ip-26-0-163-147]: Local number of parameters: 43.2M (82.38MiB)
[default6]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=14|ip-26-0-163-147]: [After model building] Memory usage: 98.13MiB. Peak allocated: 100.16MiB Peak reserved: 112.00MiB
[default0]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=8|ip-26-0-163-147]: Local number of parameters: 43.2M (82.38MiB)
[default0]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=8|ip-26-0-163-147]: [After model building] Memory usage: 98.13MiB. Peak allocated: 100.16MiB Peak reserved: 112.00MiB
[default3]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=11|ip-26-0-163-147]: Local number of parameters: 43.2M (82.38MiB)
[default3]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=11|ip-26-0-163-147]: [After model building] Memory usage: 98.13MiB. Peak allocated: 100.16MiB Peak reserved: 112.00MiB
[default3]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=11|ip-26-0-163-147]: No checkpoint path provided.
[default7]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=15|ip-26-0-163-147]: Local number of parameters: 43.2M (82.38MiB)
[default7]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=15|ip-26-0-163-147]: [After model building] Memory usage: 98.13MiB. Peak allocated: 100.16MiB Peak reserved: 112.00MiB
[default7]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=15|ip-26-0-163-147]: No checkpoint path provided.
[default1]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=9|ip-26-0-163-147]: Local number of parameters: 43.2M (82.38MiB)
[default1]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=9|ip-26-0-163-147]: [After model building] Memory usage: 98.13MiB. Peak allocated: 100.16MiB Peak reserved: 112.00MiB
[default2]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=10|ip-26-0-163-147]: Local number of parameters: 43.2M (82.38MiB)
[default6]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=14|ip-26-0-163-147]: No checkpoint path provided.
[default2]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=10|ip-26-0-163-147]: [After model building] Memory usage: 98.13MiB. Peak allocated: 100.16MiB Peak reserved: 112.00MiB
[default1]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=9|ip-26-0-163-147]: No checkpoint path provided.
[default0]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=8|ip-26-0-163-147]: No checkpoint path provided.
[default2]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=10|ip-26-0-163-147]: No checkpoint path provided.
[default7]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=7|ip-26-0-163-134]: Local number of parameters: 43.2M (82.38MiB)
[default7]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=7|ip-26-0-163-134]: [After model building] Memory usage: 98.13MiB. Peak allocated: 100.16MiB Peak reserved: 112.00MiB
[default7]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=7|ip-26-0-163-134]: No checkpoint path provided.
[default3]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=3|ip-26-0-163-134]: Local number of parameters: 43.2M (82.38MiB)
[default6]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=6|ip-26-0-163-134]: Local number of parameters: 43.2M (82.38MiB)
[default6]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=6|ip-26-0-163-134]: [After model building] Memory usage: 98.13MiB. Peak allocated: 100.16MiB Peak reserved: 112.00MiB
[default6]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=6|ip-26-0-163-134]: No checkpoint path provided.
[default3]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=3|ip-26-0-163-134]: [After model building] Memory usage: 98.13MiB. Peak allocated: 100.16MiB Peak reserved: 112.00MiB
[default3]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=3|ip-26-0-163-134]: No checkpoint path provided.
[default0]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: No checkpoint path provided.
[default0]:07/06/2024 09:21:40 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: Parametrizing model parameters using StandardParametrizator
[default1]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=1|ip-26-0-172-252]: No checkpoint path provided.
[default0]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=0|ip-26-0-172-252]: No checkpoint path provided.
[default6]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=6|ip-26-0-172-252]: No checkpoint path provided.
[default3]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=3|ip-26-0-172-252]: No checkpoint path provided.
[default2]:07/06/2024 09:21:40 [INFO|DP=0|PP=1|TP=2|ip-26-0-172-252]: No checkpoint path provided.
[default0]:07/06/2024 09:21:41 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: [Optimizer Building] Using LearningRateForSP as learning rate
[default0]:07/06/2024 09:21:41 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: [ZeRO sharding] Size of optimizer params per rank:
[default0]:07/06/2024 09:21:41 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: [ZeRO sharding] DP Rank 0 has 21.6M out of 43.2M (50.00%) params' optimizer states
[default0]:07/06/2024 09:21:41 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: [ZeRO sharding] DP Rank 1 has 21.6M out of 43.2M (50.00%) params' optimizer states
[default0]:07/06/2024 09:21:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
[default0]:07/06/2024 09:21:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: Using `datasets` library
[default0]:07/06/2024 09:21:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/06/2024 09:21:43 [WARNING|DP=0|PP=0|TP=0|ip-26-0-163-134]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/06/2024 09:21:44 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: [Training Plan] There are 1 training stages
[default0]:07/06/2024 09:21:44 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: [Stage Training Stage] start from step 1
[default0]:07/06/2024 09:21:44 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]:
[default0]:07/06/2024 09:21:44 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: [Start training] datetime: 2024-07-06 09:21:44.006600 | mbs: 1 | grad_accum: 512 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/06/2024 09:21:44 [WARNING|DP=1|PP=0|TP=4|ip-26-0-172-142]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/06/2024 09:21:44 [WARNING|DP=1|PP=0|TP=1|ip-26-0-172-142]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/06/2024 09:21:44 [WARNING|DP=0|PP=1|TP=11|ip-26-0-173-202]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/06/2024 09:21:44 [WARNING|DP=0|PP=0|TP=4|ip-26-0-163-134]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/06/2024 09:21:44 [WARNING|DP=0|PP=0|TP=1|ip-26-0-163-134]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/06/2024 09:21:44 [WARNING|DP=0|PP=0|TP=5|ip-26-0-163-134]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/06/2024 09:21:44 [WARNING|DP=1|PP=0|TP=0|ip-26-0-172-142]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/06/2024 09:21:44 [WARNING|DP=1|PP=0|TP=13|ip-26-0-172-147]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/06/2024 09:21:44 [WARNING|DP=0|PP=0|TP=2|ip-26-0-163-134]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/06/2024 09:21:44 [WARNING|DP=1|PP=0|TP=6|ip-26-0-172-142]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/06/2024 09:21:44 [WARNING|DP=0|PP=1|TP=8|ip-26-0-173-202]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/06/2024 09:21:44 [WARNING|DP=1|PP=0|TP=7|ip-26-0-172-142]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/06/2024 09:21:44 [WARNING|DP=1|PP=0|TP=3|ip-26-0-172-142]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/06/2024 09:21:44 [WARNING|DP=1|PP=0|TP=5|ip-26-0-172-142]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/06/2024 09:21:44 [WARNING|DP=1|PP=0|TP=2|ip-26-0-172-142]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/06/2024 09:21:44 [WARNING|DP=0|PP=1|TP=14|ip-26-0-173-202]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/06/2024 09:21:44 [WARNING|DP=0|PP=1|TP=12|ip-26-0-173-202]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/06/2024 09:21:44 [WARNING|DP=1|PP=1|TP=13|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/06/2024 09:21:44 [WARNING|DP=1|PP=0|TP=11|ip-26-0-172-147]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/06/2024 09:21:44 [WARNING|DP=1|PP=1|TP=11|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/06/2024 09:21:44 [WARNING|DP=1|PP=1|TP=10|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/06/2024 09:21:44 [WARNING|DP=1|PP=0|TP=8|ip-26-0-172-147]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/06/2024 09:21:44 [WARNING|DP=1|PP=0|TP=9|ip-26-0-172-147]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/06/2024 09:21:44 [WARNING|DP=1|PP=0|TP=14|ip-26-0-172-147]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/06/2024 09:21:44 [WARNING|DP=0|PP=1|TP=9|ip-26-0-173-202]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/06/2024 09:21:44 [WARNING|DP=0|PP=1|TP=15|ip-26-0-173-202]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/06/2024 09:21:44 [WARNING|DP=1|PP=1|TP=14|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/06/2024 09:21:44 [WARNING|DP=1|PP=0|TP=10|ip-26-0-172-147]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/06/2024 09:21:44 [WARNING|DP=1|PP=1|TP=9|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/06/2024 09:21:44 [WARNING|DP=1|PP=1|TP=3|ip-26-0-173-246]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/06/2024 09:21:44 [WARNING|DP=1|PP=1|TP=12|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/06/2024 09:21:44 [WARNING|DP=1|PP=1|TP=5|ip-26-0-173-246]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/06/2024 09:21:44 [WARNING|DP=1|PP=0|TP=15|ip-26-0-172-147]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/06/2024 09:21:44 [WARNING|DP=1|PP=1|TP=0|ip-26-0-173-246]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/06/2024 09:21:44 [WARNING|DP=0|PP=0|TP=9|ip-26-0-163-147]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/06/2024 09:21:44 [WARNING|DP=0|PP=0|TP=15|ip-26-0-163-147]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/06/2024 09:21:44 [WARNING|DP=0|PP=0|TP=10|ip-26-0-163-147]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/06/2024 09:21:44 [WARNING|DP=0|PP=0|TP=11|ip-26-0-163-147]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/06/2024 09:21:44 [WARNING|DP=0|PP=0|TP=6|ip-26-0-163-134]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/06/2024 09:21:44 [WARNING|DP=0|PP=0|TP=8|ip-26-0-163-147]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/06/2024 09:21:44 [WARNING|DP=0|PP=0|TP=7|ip-26-0-163-134]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/06/2024 09:21:44 [WARNING|DP=0|PP=0|TP=3|ip-26-0-163-134]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/06/2024 09:21:44 [WARNING|DP=1|PP=0|TP=12|ip-26-0-172-147]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/06/2024 09:21:44 [WARNING|DP=0|PP=1|TP=0|ip-26-0-172-252]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/06/2024 09:21:44 [WARNING|DP=0|PP=1|TP=1|ip-26-0-172-252]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/06/2024 09:21:44 [WARNING|DP=1|PP=1|TP=8|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/06/2024 09:21:44 [WARNING|DP=1|PP=1|TP=1|ip-26-0-173-246]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/06/2024 09:21:44 [WARNING|DP=0|PP=1|TP=2|ip-26-0-172-252]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/06/2024 09:21:44 [WARNING|DP=0|PP=1|TP=6|ip-26-0-172-252]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/06/2024 09:21:44 [WARNING|DP=0|PP=1|TP=3|ip-26-0-172-252]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/06/2024 09:21:44 [WARNING|DP=1|PP=1|TP=4|ip-26-0-173-246]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/06/2024 09:21:44 [WARNING|DP=1|PP=1|TP=2|ip-26-0-173-246]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/06/2024 09:21:44 [WARNING|DP=0|PP=0|TP=13|ip-26-0-163-147]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/06/2024 09:21:44 [WARNING|DP=0|PP=1|TP=4|ip-26-0-172-252]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/06/2024 09:21:44 [WARNING|DP=0|PP=1|TP=7|ip-26-0-172-252]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/06/2024 09:21:44 [WARNING|DP=0|PP=0|TP=12|ip-26-0-163-147]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/06/2024 09:21:44 [WARNING|DP=1|PP=1|TP=15|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/06/2024 09:21:44 [WARNING|DP=0|PP=0|TP=14|ip-26-0-163-147]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/06/2024 09:21:44 [WARNING|DP=0|PP=1|TP=13|ip-26-0-173-202]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/06/2024 09:21:44 [WARNING|DP=0|PP=1|TP=10|ip-26-0-173-202]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/06/2024 09:21:44 [WARNING|DP=0|PP=1|TP=5|ip-26-0-172-252]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/06/2024 09:21:44 [WARNING|DP=1|PP=1|TP=6|ip-26-0-173-246]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/06/2024 09:21:44 [WARNING|DP=1|PP=1|TP=7|ip-26-0-173-246]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/06/2024 09:21:50 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
[default0]:07/06/2024 09:21:50 [INFO|DP=0|PP=0|TP=0|ip-26-0-163-134]: Memory usage: 345.27MiB. Peak allocated 345.27MiB. Peak reserved: 362.00MiB
[default4]:Traceback (most recent call last):
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default4]: trainer.train(dataloader)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 430, in train
[default4]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 459, in training_step
[default4]: outputs = self.pipeline_engine.train_batch_iter(
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 187, in train_batch_iter
[default4]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default4]: output = model(**micro_batch)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 890, in forward
[default4]: sharded_logits = self.model(
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default4]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default4]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default4]: output = self.pp_block(**new_kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]:Traceback (most recent call last):
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default5]: trainer.train(dataloader)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 430, in train
[default5]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default7]:Traceback (most recent call last):
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 459, in training_step
[default5]: outputs = self.pipeline_engine.train_batch_iter(
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 187, in train_batch_iter
[default5]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default5]: output = model(**micro_batch)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 890, in forward
[default5]: sharded_logits = self.model(
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default5]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default5]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default5]: output = self.pp_block(**new_kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 636, in forward
[default5]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 170, in forward
[default5]: merged_states = self.gate_up_proj(hidden_states)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
[default5]: return column_linear(
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
[default5]: return F.linear(input, weight, bias)
[default5]:torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 5 has a total capacity of 79.33 GiB of which 3.94 MiB is free. Including non-PyTorch memory, this process has 79.31 GiB memory in use. Of the allocated memory 70.05 GiB is allocated by PyTorch, and 11.59 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default7]: trainer.train(dataloader)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 430, in train
[default7]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 459, in training_step
[default7]: outputs = self.pipeline_engine.train_batch_iter(
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 187, in train_batch_iter
[default7]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default7]: output = model(**micro_batch)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 890, in forward
[default7]: sharded_logits = self.model(
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default7]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default7]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default7]: output = self.pp_block(**new_kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 636, in forward
[default7]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
[default7]: hidden_states = self.down_proj(self.split_silu_mul(merged_states))
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default7]: return row_linear(
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 474, in row_linear
[default7]: out = F.linear(input, weight, bias)
[default7]:torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 MiB. GPU 7 has a total capacity of 79.33 GiB of which 15.94 MiB is free. Including non-PyTorch memory, this process has 79.30 GiB memory in use. Of the allocated memory 70.10 GiB is allocated by PyTorch, and 13.55 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default7]:Traceback (most recent call last):
[default6]:Traceback (most recent call last):
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default6]: trainer.train(dataloader)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 430, in train
[default6]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 459, in training_step
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default7]: trainer.train(dataloader)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 430, in train
[default7]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 459, in training_step
[default7]: outputs = self.pipeline_engine.train_batch_iter(
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 187, in train_batch_iter
[default7]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default6]: outputs = self.pipeline_engine.train_batch_iter(
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 187, in train_batch_iter
[default7]: output = model(**micro_batch)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 890, in forward
[default7]: sharded_logits = self.model(
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default6]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default6]: output = model(**micro_batch)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 890, in forward
[default6]: sharded_logits = self.model(
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default7]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default7]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default7]: return self._call_impl(*args, **kwargs)
[default6]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default7]: output = self.pp_block(**new_kwargs)
[default6]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default7]: return self._call_impl(*args, **kwargs)
[default6]: output = self.pp_block(**new_kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 636, in forward
[default6]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 636, in forward
[default7]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 170, in forward
[default6]: merged_states = self.gate_up_proj(hidden_states)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
[default6]: return column_linear(
[default7]: hidden_states = self.down_proj(self.split_silu_mul(merged_states))
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
[default6]: return F.linear(input, weight, bias)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default6]:torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 6 has a total capacity of 79.33 GiB of which 3.94 MiB is free. Including non-PyTorch memory, this process has 79.31 GiB memory in use. Of the allocated memory 70.05 GiB is allocated by PyTorch, and 11.59 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default7]: return row_linear(
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 474, in row_linear
[default7]: out = F.linear(input, weight, bias)
[default7]:torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 MiB. GPU 7 has a total capacity of 79.33 GiB of which 15.94 MiB is free. Including non-PyTorch memory, this process has 79.30 GiB memory in use. Of the allocated memory 70.10 GiB is allocated by PyTorch, and 13.55 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default5]:Traceback (most recent call last):
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default5]: trainer.train(dataloader)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 430, in train
[default5]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 459, in training_step
[default5]: outputs = self.pipeline_engine.train_batch_iter(
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 187, in train_batch_iter
[default5]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default5]: output = model(**micro_batch)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 890, in forward
[default5]: sharded_logits = self.model(
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default5]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default5]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default5]: output = self.pp_block(**new_kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 636, in forward
[default5]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 170, in forward
[default5]: merged_states = self.gate_up_proj(hidden_states)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
[default5]: return column_linear(
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
[default5]: return F.linear(input, weight, bias)
[default5]:torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 5 has a total capacity of 79.33 GiB of which 3.94 MiB is free. Including non-PyTorch memory, this process has 79.31 GiB memory in use. Of the allocated memory 70.05 GiB is allocated by PyTorch, and 11.59 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 636, in forward
[default4]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 170, in forward
[default4]: merged_states = self.gate_up_proj(hidden_states)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
[default4]: return column_linear(
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
[default4]: return F.linear(input, weight, bias)
[default4]:torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 4 has a total capacity of 79.33 GiB of which 3.94 MiB is free. Including non-PyTorch memory, this process has 79.31 GiB memory in use. Of the allocated memory 70.05 GiB is allocated by PyTorch, and 11.59 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default4]:Traceback (most recent call last):
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default4]: trainer.train(dataloader)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 430, in train
[default4]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 459, in training_step
[default4]: outputs = self.pipeline_engine.train_batch_iter(
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 187, in train_batch_iter
[default4]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default4]: output = model(**micro_batch)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 890, in forward
[default4]: sharded_logits = self.model(
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default4]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default4]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default4]: output = self.pp_block(**new_kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 636, in forward
[default4]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 170, in forward
[default4]: merged_states = self.gate_up_proj(hidden_states)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
[default4]: return column_linear(
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
[default4]: return F.linear(input, weight, bias)
[default4]:torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 4 has a total capacity of 79.33 GiB of which 3.94 MiB is free. Including non-PyTorch memory, this process has 79.31 GiB memory in use. Of the allocated memory 70.05 GiB is allocated by PyTorch, and 11.59 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default6]:Traceback (most recent call last):
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default6]: trainer.train(dataloader)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 430, in train
[default6]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 459, in training_step
[default6]: outputs = self.pipeline_engine.train_batch_iter(
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 187, in train_batch_iter
[default6]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default6]: output = model(**micro_batch)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 890, in forward
[default6]: sharded_logits = self.model(
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default6]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default6]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default6]: output = self.pp_block(**new_kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 636, in forward
[default6]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 170, in forward
[default6]: merged_states = self.gate_up_proj(hidden_states)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
[default6]: return column_linear(
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
[default6]: return F.linear(input, weight, bias)
[default6]:torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 6 has a total capacity of 79.33 GiB of which 3.94 MiB is free. Including non-PyTorch memory, this process has 79.31 GiB memory in use. Of the allocated memory 70.05 GiB is allocated by PyTorch, and 11.59 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default6]:Traceback (most recent call last):
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default6]: trainer.train(dataloader)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 430, in train
[default6]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 459, in training_step
[default6]: outputs = self.pipeline_engine.train_batch_iter(
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 187, in train_batch_iter
[default6]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default6]: output = model(**micro_batch)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 890, in forward
[default6]: sharded_logits = self.model(
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default6]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default6]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default6]: output = self.pp_block(**new_kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 636, in forward
[default6]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 170, in forward
[default6]: merged_states = self.gate_up_proj(hidden_states)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
[default6]: return column_linear(
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
[default6]: return F.linear(input, weight, bias)
[default6]:torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 6 has a total capacity of 79.33 GiB of which 3.94 MiB is free. Including non-PyTorch memory, this process has 79.31 GiB memory in use. Of the allocated memory 70.05 GiB is allocated by PyTorch, and 11.59 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default4]:Traceback (most recent call last):
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default4]: trainer.train(dataloader)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 430, in train
[default4]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 459, in training_step
[default4]: outputs = self.pipeline_engine.train_batch_iter(
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 187, in train_batch_iter
[default4]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default4]: output = model(**micro_batch)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 890, in forward
[default4]: sharded_logits = self.model(
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default4]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default4]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default4]: output = self.pp_block(**new_kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 636, in forward
[default4]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 170, in forward
[default4]: merged_states = self.gate_up_proj(hidden_states)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
[default4]: return column_linear(
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
[default4]: return F.linear(input, weight, bias)
[default4]:torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 4 has a total capacity of 79.33 GiB of which 3.94 MiB is free. Including non-PyTorch memory, this process has 79.31 GiB memory in use. Of the allocated memory 70.05 GiB is allocated by PyTorch, and 11.59 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default5]:Traceback (most recent call last):
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default5]: trainer.train(dataloader)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 430, in train
[default5]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 459, in training_step
[default5]: outputs = self.pipeline_engine.train_batch_iter(
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 187, in train_batch_iter
[default5]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default5]: output = model(**micro_batch)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 890, in forward
[default5]: sharded_logits = self.model(
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default5]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default5]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default5]: output = self.pp_block(**new_kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 636, in forward
[default5]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 170, in forward
[default5]: merged_states = self.gate_up_proj(hidden_states)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
[default5]: return column_linear(
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
[default5]: return F.linear(input, weight, bias)
[default5]:torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 5 has a total capacity of 79.33 GiB of which 3.94 MiB is free.[default4]:Traceback (most recent call last):
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default4]: trainer.train(dataloader)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 430, in train
[default4]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 459, in training_step
[default4]: outputs = self.pipeline_engine.train_batch_iter(
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 187, in train_batch_iter
[default4]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default4]: output = Including non-PyTorch memory, this process has 79.31 GiB memory in use. Of the allocated memory 70.05 GiB is allocated by PyTorch, and 11.59 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
model(**micro_batch)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 890, in forward
[default4]: sharded_logits = self.model(
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default4]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default4]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default4]: output = self.pp_block(**new_kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 636, in forward
[default4]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 170, in forward
[default4]: merged_states = self.gate_up_proj(hidden_states)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default4]: return self._call_impl(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default4]: return forward_call(*args, **kwargs)
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
[default4]: return column_linear(
[default4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
[default4]: return F.linear(input, weight, bias)
[default4]:torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 4 has a total capacity of 79.33 GiB of which 3.94 MiB is free. Including non-PyTorch memory, this process has 79.31 GiB memory in use. Of the allocated memory 70.05 GiB is allocated by PyTorch, and 11.59 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default6]:Traceback (most recent call last):
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default6]: trainer.train(dataloader)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 430, in train
[default6]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 459, in training_step
[default6]: outputs = self.pipeline_engine.train_batch_iter(
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 187, in train_batch_iter
[default6]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default6]: output = model(**micro_batch)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 890, in forward
[default6]: sharded_logits = self.model(
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default6]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default6]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default6]: output = self.pp_block(**new_kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 636, in forward
[default6]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 170, in forward
[default6]: merged_states = self.gate_up_proj(hidden_states)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default6]: return self._call_impl(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default6]: return forward_call(*args, **kwargs)
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
[default6]: return column_linear(
[default6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
[default6]: return F.linear(input, weight, bias)
[default6]:torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 6 has a total capacity of 79.33 GiB of which 3.94 MiB is free. Including non-PyTorch memory, this process has 79.31 GiB memory in use. Of the allocated memory 70.05 GiB is allocated by PyTorch, and 11.59 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default5]:Traceback (most recent call last):
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default5]: trainer.train(dataloader)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 430, in train
[default5]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 459, in training_step
[default5]: outputs = self.pipeline_engine.train_batch_iter(
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 187, in train_batch_iter
[default5]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default5]: output = model(**micro_batch)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 890, in forward
[default5]: sharded_logits = self.model(
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default5]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default5]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default5]: output = self.pp_block(**new_kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 636, in forward
[default5]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 170, in forward
[default5]: merged_states = self.gate_up_proj(hidden_states)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default5]: return self._call_impl(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default5]: return forward_call(*args, **kwargs)
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
[default5]: return column_linear(
[default5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
[default5]: return F.linear(input, weight, bias)
[default5]:torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 5 has a total capacity of 79.33 GiB of which 3.94 MiB is free. Including non-PyTorch memory, this process has 79.31 GiB memory in use. Of the allocated memory 70.05 GiB is allocated by PyTorch, and 11.59 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default7]:Traceback (most recent call last):
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default7]: trainer.train(dataloader)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 430, in train
[default7]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 459, in training_step
[default7]: outputs = self.pipeline_engine.train_batch_iter(
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 187, in train_batch_iter
[default7]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default7]: output = model(**micro_batch)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 890, in forward
[default7]: sharded_logits = self.model(
[default7]:Traceback (most recent call last):
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default7]: trainer.train(dataloader)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 430, in train
[default7]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 459, in training_step
[default7]: outputs = self.pipeline_engine.train_batch_iter(
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 187, in train_batch_iter
[default7]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default7]: output = [default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
model(**micro_batch)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 890, in forward
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default7]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default7]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default7]: output = self.pp_block(**new_kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 636, in forward
[default7]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
[default7]: hidden_states = self.down_proj(self.split_silu_mul(merged_states))
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: sharded_logits = self.model(
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default7]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default7]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default7]: return row_linear(
modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default7]: output = self.pp_block(**new_kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/mode[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 474, in row_linear
[default7]: out = F.linear(input, weight, bias)
[default7]:torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 MiB. GPU 7 has a total capacity of 79.33 GiB of which 15.94 MiB is free. Including non-PyTorch memory, this process has 79.30 GiB memory in use. Of the allocated memory 70.10 GiB is allocated by PyTorch, and 13.55 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
ls/llama.py", line 636, in forward
[default7]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
[default7]: hidden_states = self.down_proj(self.split_silu_mul(merged_states))
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
[default7]: return self._call_impl(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
[default7]: return forward_call(*args, **kwargs)
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default7]: return row_linear(
[default7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 474, in row_linear
[default7]: out = F.linear(input, weight, bias)
[default7]:torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 MiB. GPU 7 has a total capacity of 79.33 GiB of which 15.94 MiB is free. Including non-PyTorch memory, this process has 79.30 GiB memory in use. Of the allocated memory 70.10 GiB is allocated by PyTorch, and 13.55 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[2024-07-06 09:22:21,737] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 3612201 closing signal SIGTERM
[2024-07-06 09:22:21,738] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 3612202 closing signal SIGTERM
[2024-07-06 09:22:21,738] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 3612203 closing signal SIGTERM
[2024-07-06 09:22:21,739] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 3612204 closing signal SIGTERM
[2024-07-06 09:22:21,740] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 3612207 closing signal SIGTERM
[2024-07-06 09:22:21,740] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 3612208 closing signal SIGTERM
[2024-07-06 09:22:21,740] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 2022686 closing signal SIGTERM
[2024-07-06 09:22:21,740] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 2022687 closing signal SIGTERM
[2024-07-06 09:22:21,741] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 2022688 closing signal SIGTERM
[2024-07-06 09:22:21,741] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 2022689 closing signal SIGTERM
[2024-07-06 09:22:21,742] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 2022691 closing signal SIGTERM
[2024-07-06 09:22:21,742] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 2022693 closing signal SIGTERM
[2024-07-06 09:22:26,695] torch.distributed.elastic.multiprocessing.api: [ERROR] failed (exitcode: 1) local_rank: 4 (pid: 3612205) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 812, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 803, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 135, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 268, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
============================================================
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
------------------------------------------------------------
Failures:
[1]:
time : 2024-07-06_09:22:21
host : ip-26-0-163-134.ec2.internal
rank : 5 (local_rank: 5)
exitcode : 1 (pid: 3612206)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
time : 2024-07-06_09:22:21
host : ip-26-0-163-134.ec2.internal
rank : 4 (local_rank: 4)
exitcode : 1 (pid: 3612205)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
[2024-07-06 09:22:26,744] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 1323531 closing signal SIGTERM
[2024-07-06 09:22:26,744] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 1323532 closing signal SIGTERM
[2024-07-06 09:22:26,745] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 1323533 closing signal SIGTERM
[2024-07-06 09:22:26,746] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 1323534 closing signal SIGTERM
[2024-07-06 09:22:26,749] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 3927410 closing signal SIGTERM
[2024-07-06 09:22:26,749] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 3927411 closing signal SIGTERM
[2024-07-06 09:22:26,750] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 3927412 closing signal SIGTERM
[2024-07-06 09:22:26,752] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 3927413 closing signal SIGTERM
srun: error: ip-26-0-163-134: task 0: Exited with exit code 1
[2024-07-06 09:22:26,995] torch.distributed.elastic.multiprocessing.api: [ERROR] failed (exitcode: 1) local_rank: 4 (pid: 2022690) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
[2024-07-06 09:22:27,043] torch.distributed.elastic.rendezvous.dynamic_rendezvous: [WARNING] The node 'ip-26-0-163-147.ec2.internal_2022617_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 812, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 803, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 135, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 268, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
============================================================
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
------------------------------------------------------------
Failures:
[1]:
time : 2024-07-06_09:22:21
host : ip-26-0-163-147.ec2.internal
rank : 14 (local_rank: 6)
exitcode : 1 (pid: 2022692)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
time : 2024-07-06_09:22:21
host : ip-26-0-163-147.ec2.internal
rank : 12 (local_rank: 4)
exitcode : 1 (pid: 2022690)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
srun: error: ip-26-0-163-147: task 1: Exited with exit code 1
[2024-07-06 09:22:30,732] torch.distributed.elastic.rendezvous.dynamic_rendezvous: [WARNING] The node 'ip-26-0-172-142.ec2.internal_3927341_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
[2024-07-06 09:22:31,077] torch.distributed.elastic.multiprocessing.api: [ERROR] failed (exitcode: 1) local_rank: 4 (pid: 3927414) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
[2024-07-06 09:22:31,125] torch.distributed.elastic.rendezvous.dynamic_rendezvous: [WARNING] The node 'ip-26-0-172-142.ec2.internal_3927341_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 812, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 803, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 135, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 268, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
============================================================
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
------------------------------------------------------------
Failures:
[1]:
time : 2024-07-06_09:22:26
host : ip-26-0-172-142.ec2.internal
rank : 21 (local_rank: 5)
exitcode : 1 (pid: 3927415)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[2]:
time : 2024-07-06_09:22:26
host : ip-26-0-172-142.ec2.internal
rank : 22 (local_rank: 6)
exitcode : 1 (pid: 3927416)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[3]:
time : 2024-07-06_09:22:26
host : ip-26-0-172-142.ec2.internal
rank : 23 (local_rank: 7)
exitcode : 1 (pid: 3927417)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
time : 2024-07-06_09:22:26
host : ip-26-0-172-142.ec2.internal
rank : 20 (local_rank: 4)
exitcode : 1 (pid: 3927414)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
[2024-07-06 09:22:31,278] torch.distributed.elastic.multiprocessing.api: [ERROR] failed (exitcode: 1) local_rank: 4 (pid: 1323535) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
[2024-07-06 09:22:31,325] torch.distributed.elastic.rendezvous.dynamic_rendezvous: [WARNING] The node 'ip-26-0-172-147.ec2.internal_1323462_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 812, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 803, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 135, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 268, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
============================================================
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
------------------------------------------------------------
Failures:
[1]:
time : 2024-07-06_09:22:26
host : ip-26-0-172-147.ec2.internal
rank : 29 (local_rank: 5)
exitcode : 1 (pid: 1323536)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[2]:
time : 2024-07-06_09:22:26
host : ip-26-0-172-147.ec2.internal
rank : 30 (local_rank: 6)
exitcode : 1 (pid: 1323537)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[3]:
time : 2024-07-06_09:22:26
host : ip-26-0-172-147.ec2.internal
rank : 31 (local_rank: 7)
exitcode : 1 (pid: 1323538)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
time : 2024-07-06_09:22:26
host : ip-26-0-172-147.ec2.internal
rank : 28 (local_rank: 4)
exitcode : 1 (pid: 1323535)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
srun: error: ip-26-0-172-142: task 2: Exited with exit code 1
[2024-07-06 09:22:31,541] torch.distributed.elastic.rendezvous.dynamic_rendezvous: [WARNING] The node 'ip-26-0-173-202.ec2.internal_2503871_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
srun: error: ip-26-0-172-147: task 3: Exited with exit code 1
[2024-07-06 09:22:31,629] torch.distributed.elastic.rendezvous.dynamic_rendezvous: [WARNING] The node 'ip-26-0-174-36.ec2.internal_1699288_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
[2024-07-06 09:22:31,650] torch.distributed.elastic.rendezvous.dynamic_rendezvous: [WARNING] The node 'ip-26-0-172-252.ec2.internal_3107371_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
[2024-07-06 09:22:31,721] torch.distributed.elastic.rendezvous.dynamic_rendezvous: [WARNING] The node 'ip-26-0-173-246.ec2.internal_277684_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
[2024-07-06 09:22:31,748] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 277753 closing signal SIGTERM
[2024-07-06 09:22:31,749] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 277754 closing signal SIGTERM
[2024-07-06 09:22:31,750] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 2503940 closing signal SIGTERM
[2024-07-06 09:22:31,750] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 2503941 closing signal SIGTERM
[2024-07-06 09:22:31,751] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 277755 closing signal SIGTERM
[2024-07-06 09:22:31,752] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 2503942 closing signal SIGTERM
[2024-07-06 09:22:31,751] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 277756 closing signal SIGTERM
[2024-07-06 09:22:31,754] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 2503943 closing signal SIGTERM
[2024-07-06 09:22:31,754] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 2503944 closing signal SIGTERM
[2024-07-06 09:22:31,754] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 277757 closing signal SIGTERM
[2024-07-06 09:22:31,757] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 1699357 closing signal SIGTERM
[2024-07-06 09:22:31,755] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 3107441 closing signal SIGTERM
[2024-07-06 09:22:31,758] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 1699358 closing signal SIGTERM
[2024-07-06 09:22:31,759] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 1699359 closing signal SIGTERM
[2024-07-06 09:22:31,756] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 3107442 closing signal SIGTERM
[2024-07-06 09:22:31,757] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 3107443 closing signal SIGTERM
[2024-07-06 09:22:31,758] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 2503945 closing signal SIGTERM
[2024-07-06 09:22:31,758] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 277758 closing signal SIGTERM
[2024-07-06 09:22:31,759] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 277759 closing signal SIGTERM
[2024-07-06 09:22:31,761] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 1699360 closing signal SIGTERM
[2024-07-06 09:22:31,758] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 3107444 closing signal SIGTERM
[2024-07-06 09:22:31,759] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 2503946 closing signal SIGTERM
[2024-07-06 09:22:31,759] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 3107445 closing signal SIGTERM
[2024-07-06 09:22:31,761] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 277760 closing signal SIGTERM
[2024-07-06 09:22:31,764] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 1699361 closing signal SIGTERM
[2024-07-06 09:22:31,764] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 2503947 closing signal SIGTERM
[2024-07-06 09:22:31,764] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 3107446 closing signal SIGTERM
[2024-07-06 09:22:31,768] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 1699362 closing signal SIGTERM
[2024-07-06 09:22:31,769] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 1699363 closing signal SIGTERM
[2024-07-06 09:22:31,769] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 1699364 closing signal SIGTERM
[2024-07-06 09:22:31,766] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 3107447 closing signal SIGTERM
[2024-07-06 09:22:31,767] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 3107448 closing signal SIGTERM
[2024-07-06 09:22:36,546] torch.distributed.elastic.rendezvous.dynamic_rendezvous: [WARNING] The node 'ip-26-0-173-202.ec2.internal_2503871_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
[2024-07-06 09:22:36,633] torch.distributed.elastic.rendezvous.dynamic_rendezvous: [WARNING] The node 'ip-26-0-174-36.ec2.internal_1699288_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
[2024-07-06 09:22:36,654] torch.distributed.elastic.rendezvous.dynamic_rendezvous: [WARNING] The node 'ip-26-0-172-252.ec2.internal_3107371_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
[2024-07-06 09:22:36,725] torch.distributed.elastic.rendezvous.dynamic_rendezvous: [WARNING] The node 'ip-26-0-173-246.ec2.internal_277684_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
[2024-07-06 09:22:37,999] torch.distributed.elastic.rendezvous.dynamic_rendezvous: [WARNING] The node 'ip-26-0-174-36.ec2.internal_1699288_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 113, in _call_store
return getattr(self._store, store_op)(*args, **kwargs)
torch.distributed.DistNetworkError: Broken pipe
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 812, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 803, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 135, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 259, in launch_agent
result = agent.run()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 123, in wrapper
result = f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 727, in run
result = self._invoke_run(role)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 900, in _invoke_run
num_nodes_waiting = rdzv_handler.num_nodes_waiting()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1083, in num_nodes_waiting
self._state_holder.sync()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 409, in sync
get_response = self._backend.get_state()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 73, in get_state
base64_state: bytes = self._call_store("get", self._key)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 115, in _call_store
raise RendezvousConnectionError(
torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
[2024-07-06 09:22:38,103] torch.distributed.elastic.rendezvous.dynamic_rendezvous: [WARNING] The node 'ip-26-0-173-246.ec2.internal_277684_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 113, in _call_store
return getattr(self._store, store_op)(*args, **kwargs)
torch.distributed.DistNetworkError: Broken pipe
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 812, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 803, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 135, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 259, in launch_agent
result = agent.run()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 123, in wrapper
result = f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 727, in run
result = self._invoke_run(role)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 900, in _invoke_run
num_nodes_waiting = rdzv_handler.num_nodes_waiting()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1083, in num_nodes_waiting
self._state_holder.sync()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 409, in sync
get_response = self._backend.get_state()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 73, in get_state
base64_state: bytes = self._call_store("get", self._key)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 115, in _call_store
raise RendezvousConnectionError(
torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
[2024-07-06 09:22:38,219] torch.distributed.elastic.rendezvous.dynamic_rendezvous: [WARNING] The node 'ip-26-0-172-252.ec2.internal_3107371_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 113, in _call_store
return getattr(self._store, store_op)(*args, **kwargs)
torch.distributed.DistNetworkError: Broken pipe
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 812, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 803, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 135, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 259, in launch_agent
result = agent.run()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 123, in wrapper
result = f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 727, in run
result = self._invoke_run(role)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 900, in _invoke_run
num_nodes_waiting = rdzv_handler.num_nodes_waiting()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1083, in num_nodes_waiting
self._state_holder.sync()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 409, in sync
get_response = self._backend.get_state()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 73, in get_state
base64_state: bytes = self._call_store("get", self._key)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 115, in _call_store
raise RendezvousConnectionError(
torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
srun: error: ip-26-0-174-36: task 7: Exited with exit code 1
srun: error: ip-26-0-173-246: task 6: Exited with exit code 1
srun: error: ip-26-0-172-252: task 4: Exited with exit code 1
[2024-07-06 09:22:38,797] torch.distributed.elastic.rendezvous.dynamic_rendezvous: [WARNING] The node 'ip-26-0-173-202.ec2.internal_2503871_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 113, in _call_store
return getattr(self._store, store_op)(*args, **kwargs)
torch.distributed.DistNetworkError: Broken pipe
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 812, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 803, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 135, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 259, in launch_agent
result = agent.run()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 123, in wrapper
result = f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 727, in run
result = self._invoke_run(role)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 900, in _invoke_run
num_nodes_waiting = rdzv_handler.num_nodes_waiting()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1083, in num_nodes_waiting
self._state_holder.sync()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 409, in sync
get_response = self._backend.get_state()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 73, in get_state
base64_state: bytes = self._call_store("get", self._key)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 115, in _call_store
raise RendezvousConnectionError(
torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
srun: error: ip-26-0-173-202: task 5: Exited with exit code 1
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.