--- base_model: intfloat/multilingual-e5-large-instruct library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: '"Он подарил мне красивое кольцо и прекрасную вечеринку на нашу годовщину." Бұл мәтінді қазақ тіліне аударып беріңізші.' - text: Would you please put that cigarette out? I get sick on it. - text: Сәлем! - text: Никусор Эшану - text: How time flies! We have been lovers for nearly a year. We hit it off instantly. inference: true model-index: - name: SetFit with intfloat/multilingual-e5-large-instruct results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.9955398215928637 name: Accuracy --- # SetFit with intfloat/multilingual-e5-large-instruct This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | rag | | | no_rag | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9955 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("nlp-team-issai/setfit-me5-large-instruct-v3") # Run inference preds = model("Сәлем!") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 10.0022 | 138 | | Label | Training Sample Count | |:-------|:----------------------| | no_rag | 218 | | rag | 241 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0003 | 1 | 0.3567 | - | | 0.0151 | 50 | 0.2851 | - | | 0.0302 | 100 | 0.0943 | - | | 0.0452 | 150 | 0.0123 | - | | 0.0603 | 200 | 0.0099 | - | | 0.0754 | 250 | 0.0056 | - | | 0.0905 | 300 | 0.0011 | - | | 0.1056 | 350 | 0.0003 | - | | 0.1207 | 400 | 0.0002 | - | | 0.1357 | 450 | 0.0001 | - | | 0.1508 | 500 | 0.0001 | - | | 0.1659 | 550 | 0.0001 | - | | 0.1810 | 600 | 0.0001 | - | | 0.1961 | 650 | 0.0001 | - | | 0.2112 | 700 | 0.0001 | - | | 0.2262 | 750 | 0.0001 | - | | 0.2413 | 800 | 0.0001 | - | | 0.2564 | 850 | 0.0001 | - | | 0.2715 | 900 | 0.0001 | - | | 0.2866 | 950 | 0.0001 | - | | 0.3017 | 1000 | 0.0001 | - | | 0.3167 | 1050 | 0.0001 | - | | 0.3318 | 1100 | 0.0001 | - | | 0.3469 | 1150 | 0.0001 | - | | 0.3620 | 1200 | 0.0001 | - | | 0.3771 | 1250 | 0.0001 | - | | 0.3922 | 1300 | 0.0001 | - | | 0.4072 | 1350 | 0.0001 | - | | 0.4223 | 1400 | 0.0 | - | | 0.4374 | 1450 | 0.0 | - | | 0.4525 | 1500 | 0.0 | - | | 0.4676 | 1550 | 0.0 | - | | 0.4827 | 1600 | 0.0 | - | | 0.4977 | 1650 | 0.0 | - | | 0.5128 | 1700 | 0.0 | - | | 0.5279 | 1750 | 0.0 | - | | 0.5430 | 1800 | 0.0 | - | | 0.5581 | 1850 | 0.0 | - | | 0.5732 | 1900 | 0.0 | - | | 0.5882 | 1950 | 0.0 | - | | 0.6033 | 2000 | 0.0 | - | | 0.6184 | 2050 | 0.0 | - | | 0.6335 | 2100 | 0.0 | - | | 0.6486 | 2150 | 0.0 | - | | 0.6637 | 2200 | 0.0 | - | | 0.6787 | 2250 | 0.0 | - | | 0.6938 | 2300 | 0.0 | - | | 0.7089 | 2350 | 0.0 | - | | 0.7240 | 2400 | 0.0 | - | | 0.7391 | 2450 | 0.0 | - | | 0.7541 | 2500 | 0.0 | - | | 0.7692 | 2550 | 0.0 | - | | 0.7843 | 2600 | 0.0 | - | | 0.7994 | 2650 | 0.0 | - | | 0.8145 | 2700 | 0.0 | - | | 0.8296 | 2750 | 0.0 | - | | 0.8446 | 2800 | 0.0 | - | | 0.8597 | 2850 | 0.0 | - | | 0.8748 | 2900 | 0.0 | - | | 0.8899 | 2950 | 0.0 | - | | 0.9050 | 3000 | 0.0 | - | | 0.9201 | 3050 | 0.0 | - | | 0.9351 | 3100 | 0.0 | - | | 0.9502 | 3150 | 0.0 | - | | 0.9653 | 3200 | 0.0 | - | | 0.9804 | 3250 | 0.0 | - | | 0.9955 | 3300 | 0.0 | - | ### Framework Versions - Python: 3.12.5 - SetFit: 1.1.0 - Sentence Transformers: 3.2.0 - Transformers: 4.45.2 - PyTorch: 2.4.0+cu121 - Datasets: 3.0.1 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```