Upload folder using huggingface_hub
Browse files- config.json +36 -0
- generation_config.json +6 -0
- global_step13692/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step13692/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step13692/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- global_step13692/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- global_step13692/mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +754 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +83 -0
- trainer_state.json +758 -0
- training_args.bin +3 -0
- zero_to_fp32.py +674 -0
config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "../../models/moe/routing/onlyRouterTrue_aveSVLossFalse_lr5e-03",
|
3 |
+
"architectures": [
|
4 |
+
"MixtralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"head_dim": 128,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 2048,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 7168,
|
15 |
+
"max_position_embeddings": 4096,
|
16 |
+
"mlp_bias": false,
|
17 |
+
"model_type": "mixtral",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_experts_per_tok": 2,
|
20 |
+
"num_hidden_layers": 24,
|
21 |
+
"num_key_value_heads": 16,
|
22 |
+
"num_local_experts": 8,
|
23 |
+
"output_router_logits": true,
|
24 |
+
"pretraining_tp": 1,
|
25 |
+
"rms_norm_eps": 1e-05,
|
26 |
+
"rope_scaling": null,
|
27 |
+
"rope_theta": 10000,
|
28 |
+
"router_aux_loss_coef": 0.0,
|
29 |
+
"router_jitter_noise": 0.0,
|
30 |
+
"sliding_window": null,
|
31 |
+
"tie_word_embeddings": false,
|
32 |
+
"torch_dtype": "bfloat16",
|
33 |
+
"transformers_version": "4.46.0",
|
34 |
+
"use_cache": true,
|
35 |
+
"vocab_size": 99584
|
36 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.46.0"
|
6 |
+
}
|
global_step13692/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d676431d531aebb07dbfafb4fba53176e6ac28959f36c84ef80659f6260c325
|
3 |
+
size 27800298620
|
global_step13692/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37e9b557b5a1ad0e487aa7f8adb5eed53764b57c5b9c10424ee93d200d3bf645
|
3 |
+
size 27800300284
|
global_step13692/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08f389447f17a8966fee8f29c93f763e72f4e28f585ecd31cc15526d368eb695
|
3 |
+
size 27800300476
|
global_step13692/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6d4ac4b6cd45e84c57c9abcc65461182324715f9a711ed25ca5bde03cc3f529
|
3 |
+
size 27800298684
|
global_step13692/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e952ef57c2bd4c5a694e079c24a4e90660ce31dfe2cabd83fbce4135c1ada1b7
|
3 |
+
size 18533781408
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step13692
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61351c91a915689400aeb5f9a41b0a0d601706ad0fba739ad9f7d51e38d9e43b
|
3 |
+
size 4988379392
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09d4aea22fe1e0ace2aa78b880f8e26baf0fc1c1a8756d5805a30679799aa098
|
3 |
+
size 4987299352
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1b7e202b6a0a2c9aa482321ad9315891a3b79e7b6d8d57a9c8a28bc4e8f98e3
|
3 |
+
size 4991535416
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff9af63037c8a97b40004960955d22f5de9391211a71e9383832ab8d2683ebb8
|
3 |
+
size 3566400304
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,754 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 18533519360
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.0.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.0.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.0.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.0.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.0.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.0.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.0.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.0.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.0.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.0.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.0.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.0.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.0.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
|
33 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
34 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
35 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
36 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
37 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
38 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
39 |
+
"model.layers.1.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
|
40 |
+
"model.layers.1.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
|
41 |
+
"model.layers.1.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
|
42 |
+
"model.layers.1.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
|
43 |
+
"model.layers.1.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
|
44 |
+
"model.layers.1.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
|
45 |
+
"model.layers.1.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
|
46 |
+
"model.layers.1.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
|
47 |
+
"model.layers.1.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
|
48 |
+
"model.layers.1.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
|
49 |
+
"model.layers.1.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
|
50 |
+
"model.layers.1.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
|
51 |
+
"model.layers.1.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
|
52 |
+
"model.layers.1.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
|
53 |
+
"model.layers.1.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
|
54 |
+
"model.layers.1.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
|
55 |
+
"model.layers.1.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
|
56 |
+
"model.layers.1.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
|
57 |
+
"model.layers.1.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
|
58 |
+
"model.layers.1.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
|
59 |
+
"model.layers.1.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
|
60 |
+
"model.layers.1.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00004.safetensors",
|
61 |
+
"model.layers.1.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00004.safetensors",
|
62 |
+
"model.layers.1.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00004.safetensors",
|
63 |
+
"model.layers.1.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
|
64 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
65 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
66 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
67 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
68 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
69 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
70 |
+
"model.layers.10.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.10.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.10.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.10.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.10.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.10.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.10.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.10.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.10.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.10.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.10.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.10.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.10.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.10.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.10.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.10.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.10.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.10.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.10.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.10.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.10.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.10.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.10.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.10.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.10.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.11.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.11.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.11.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.11.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.11.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.11.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.11.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.11.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.11.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.11.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.11.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.11.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.11.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.11.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.11.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.11.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.11.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.11.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.11.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.11.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.11.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.11.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.11.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.11.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.11.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
129 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
130 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.12.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
|
133 |
+
"model.layers.12.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.12.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.12.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.12.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.12.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.12.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.12.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.12.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
|
141 |
+
"model.layers.12.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
|
142 |
+
"model.layers.12.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
|
143 |
+
"model.layers.12.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
|
144 |
+
"model.layers.12.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
|
145 |
+
"model.layers.12.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
|
146 |
+
"model.layers.12.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
|
147 |
+
"model.layers.12.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
|
148 |
+
"model.layers.12.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
|
149 |
+
"model.layers.12.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
|
150 |
+
"model.layers.12.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
|
151 |
+
"model.layers.12.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
|
152 |
+
"model.layers.12.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
|
153 |
+
"model.layers.12.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00004.safetensors",
|
154 |
+
"model.layers.12.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00004.safetensors",
|
155 |
+
"model.layers.12.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00004.safetensors",
|
156 |
+
"model.layers.12.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
|
157 |
+
"model.layers.12.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
158 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
159 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
160 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
161 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
162 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
163 |
+
"model.layers.13.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
|
164 |
+
"model.layers.13.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.13.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.13.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.13.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.13.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.13.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.13.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.13.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.13.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.13.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.13.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.13.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.13.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.13.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.13.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.13.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.13.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.13.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.13.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.13.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.13.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.13.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.13.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.13.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.13.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.14.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.14.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.14.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.14.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.14.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.14.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.14.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.14.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.14.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.14.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.14.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.14.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.14.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.14.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.14.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.14.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.14.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.14.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.14.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.14.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.14.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.14.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.14.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.14.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.14.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.14.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.15.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.15.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.15.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.15.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.15.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.15.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.15.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.15.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.15.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.15.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.15.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.15.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.15.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.15.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.15.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.15.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.15.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.15.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.15.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.15.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.15.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.15.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.15.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.15.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.15.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.16.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.16.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.16.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.16.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.16.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
|
261 |
+
"model.layers.16.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
|
262 |
+
"model.layers.16.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
|
263 |
+
"model.layers.16.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
|
264 |
+
"model.layers.16.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
|
265 |
+
"model.layers.16.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
|
266 |
+
"model.layers.16.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
|
267 |
+
"model.layers.16.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
|
268 |
+
"model.layers.16.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
|
269 |
+
"model.layers.16.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
|
270 |
+
"model.layers.16.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
|
271 |
+
"model.layers.16.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
|
272 |
+
"model.layers.16.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
|
273 |
+
"model.layers.16.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
|
274 |
+
"model.layers.16.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
|
275 |
+
"model.layers.16.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
|
276 |
+
"model.layers.16.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
|
277 |
+
"model.layers.16.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00004.safetensors",
|
278 |
+
"model.layers.16.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00004.safetensors",
|
279 |
+
"model.layers.16.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00004.safetensors",
|
280 |
+
"model.layers.16.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
|
281 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
282 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
283 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
284 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
285 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
286 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
287 |
+
"model.layers.17.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
|
288 |
+
"model.layers.17.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
|
289 |
+
"model.layers.17.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
|
290 |
+
"model.layers.17.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
|
291 |
+
"model.layers.17.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
|
292 |
+
"model.layers.17.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
|
293 |
+
"model.layers.17.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
|
294 |
+
"model.layers.17.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
|
295 |
+
"model.layers.17.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
|
296 |
+
"model.layers.17.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
|
297 |
+
"model.layers.17.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
|
298 |
+
"model.layers.17.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
|
299 |
+
"model.layers.17.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
|
300 |
+
"model.layers.17.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
|
301 |
+
"model.layers.17.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
|
302 |
+
"model.layers.17.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
|
303 |
+
"model.layers.17.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
|
304 |
+
"model.layers.17.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
|
305 |
+
"model.layers.17.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
|
306 |
+
"model.layers.17.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
|
307 |
+
"model.layers.17.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
|
308 |
+
"model.layers.17.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00004.safetensors",
|
309 |
+
"model.layers.17.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00004.safetensors",
|
310 |
+
"model.layers.17.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00004.safetensors",
|
311 |
+
"model.layers.17.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
|
312 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
313 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
314 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
315 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
316 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
317 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
318 |
+
"model.layers.18.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
|
319 |
+
"model.layers.18.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
|
320 |
+
"model.layers.18.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
|
321 |
+
"model.layers.18.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
|
322 |
+
"model.layers.18.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
|
323 |
+
"model.layers.18.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
|
324 |
+
"model.layers.18.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
|
325 |
+
"model.layers.18.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
|
326 |
+
"model.layers.18.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
|
327 |
+
"model.layers.18.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
|
328 |
+
"model.layers.18.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
|
329 |
+
"model.layers.18.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
|
330 |
+
"model.layers.18.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
|
331 |
+
"model.layers.18.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
|
332 |
+
"model.layers.18.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
|
333 |
+
"model.layers.18.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
|
334 |
+
"model.layers.18.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
|
335 |
+
"model.layers.18.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
|
336 |
+
"model.layers.18.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
|
337 |
+
"model.layers.18.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
|
338 |
+
"model.layers.18.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
|
339 |
+
"model.layers.18.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00004.safetensors",
|
340 |
+
"model.layers.18.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00004.safetensors",
|
341 |
+
"model.layers.18.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00004.safetensors",
|
342 |
+
"model.layers.18.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
|
343 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
344 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
345 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
346 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
347 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
348 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
349 |
+
"model.layers.19.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
|
350 |
+
"model.layers.19.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
|
351 |
+
"model.layers.19.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
|
352 |
+
"model.layers.19.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
|
353 |
+
"model.layers.19.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
|
354 |
+
"model.layers.19.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
|
355 |
+
"model.layers.19.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
|
356 |
+
"model.layers.19.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
|
357 |
+
"model.layers.19.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
|
358 |
+
"model.layers.19.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
|
359 |
+
"model.layers.19.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
|
360 |
+
"model.layers.19.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
|
361 |
+
"model.layers.19.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
|
362 |
+
"model.layers.19.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
|
363 |
+
"model.layers.19.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
|
364 |
+
"model.layers.19.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
|
365 |
+
"model.layers.19.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
|
366 |
+
"model.layers.19.block_sparse_moe.experts.5.w3.weight": "model-00004-of-00004.safetensors",
|
367 |
+
"model.layers.19.block_sparse_moe.experts.6.w1.weight": "model-00004-of-00004.safetensors",
|
368 |
+
"model.layers.19.block_sparse_moe.experts.6.w2.weight": "model-00004-of-00004.safetensors",
|
369 |
+
"model.layers.19.block_sparse_moe.experts.6.w3.weight": "model-00004-of-00004.safetensors",
|
370 |
+
"model.layers.19.block_sparse_moe.experts.7.w1.weight": "model-00004-of-00004.safetensors",
|
371 |
+
"model.layers.19.block_sparse_moe.experts.7.w2.weight": "model-00004-of-00004.safetensors",
|
372 |
+
"model.layers.19.block_sparse_moe.experts.7.w3.weight": "model-00004-of-00004.safetensors",
|
373 |
+
"model.layers.19.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
|
374 |
+
"model.layers.19.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
375 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
376 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
377 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
378 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
379 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
380 |
+
"model.layers.2.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
|
381 |
+
"model.layers.2.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
|
382 |
+
"model.layers.2.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
|
383 |
+
"model.layers.2.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
|
384 |
+
"model.layers.2.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
|
385 |
+
"model.layers.2.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
|
386 |
+
"model.layers.2.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
|
387 |
+
"model.layers.2.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
|
388 |
+
"model.layers.2.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
|
389 |
+
"model.layers.2.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
|
390 |
+
"model.layers.2.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
|
391 |
+
"model.layers.2.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
|
392 |
+
"model.layers.2.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
|
393 |
+
"model.layers.2.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
|
394 |
+
"model.layers.2.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
|
395 |
+
"model.layers.2.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
|
396 |
+
"model.layers.2.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
|
397 |
+
"model.layers.2.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
|
398 |
+
"model.layers.2.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
|
399 |
+
"model.layers.2.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
|
400 |
+
"model.layers.2.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
|
401 |
+
"model.layers.2.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00004.safetensors",
|
402 |
+
"model.layers.2.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00004.safetensors",
|
403 |
+
"model.layers.2.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00004.safetensors",
|
404 |
+
"model.layers.2.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
|
405 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
406 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
407 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
408 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
409 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
410 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
411 |
+
"model.layers.20.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors",
|
412 |
+
"model.layers.20.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00004.safetensors",
|
413 |
+
"model.layers.20.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00004.safetensors",
|
414 |
+
"model.layers.20.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors",
|
415 |
+
"model.layers.20.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00004.safetensors",
|
416 |
+
"model.layers.20.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00004.safetensors",
|
417 |
+
"model.layers.20.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors",
|
418 |
+
"model.layers.20.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00004.safetensors",
|
419 |
+
"model.layers.20.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00004.safetensors",
|
420 |
+
"model.layers.20.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00004.safetensors",
|
421 |
+
"model.layers.20.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00004.safetensors",
|
422 |
+
"model.layers.20.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00004.safetensors",
|
423 |
+
"model.layers.20.block_sparse_moe.experts.4.w1.weight": "model-00004-of-00004.safetensors",
|
424 |
+
"model.layers.20.block_sparse_moe.experts.4.w2.weight": "model-00004-of-00004.safetensors",
|
425 |
+
"model.layers.20.block_sparse_moe.experts.4.w3.weight": "model-00004-of-00004.safetensors",
|
426 |
+
"model.layers.20.block_sparse_moe.experts.5.w1.weight": "model-00004-of-00004.safetensors",
|
427 |
+
"model.layers.20.block_sparse_moe.experts.5.w2.weight": "model-00004-of-00004.safetensors",
|
428 |
+
"model.layers.20.block_sparse_moe.experts.5.w3.weight": "model-00004-of-00004.safetensors",
|
429 |
+
"model.layers.20.block_sparse_moe.experts.6.w1.weight": "model-00004-of-00004.safetensors",
|
430 |
+
"model.layers.20.block_sparse_moe.experts.6.w2.weight": "model-00004-of-00004.safetensors",
|
431 |
+
"model.layers.20.block_sparse_moe.experts.6.w3.weight": "model-00004-of-00004.safetensors",
|
432 |
+
"model.layers.20.block_sparse_moe.experts.7.w1.weight": "model-00004-of-00004.safetensors",
|
433 |
+
"model.layers.20.block_sparse_moe.experts.7.w2.weight": "model-00004-of-00004.safetensors",
|
434 |
+
"model.layers.20.block_sparse_moe.experts.7.w3.weight": "model-00004-of-00004.safetensors",
|
435 |
+
"model.layers.20.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors",
|
436 |
+
"model.layers.20.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
437 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
438 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
439 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
440 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
441 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
442 |
+
"model.layers.21.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors",
|
443 |
+
"model.layers.21.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00004.safetensors",
|
444 |
+
"model.layers.21.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00004.safetensors",
|
445 |
+
"model.layers.21.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors",
|
446 |
+
"model.layers.21.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00004.safetensors",
|
447 |
+
"model.layers.21.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00004.safetensors",
|
448 |
+
"model.layers.21.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors",
|
449 |
+
"model.layers.21.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00004.safetensors",
|
450 |
+
"model.layers.21.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00004.safetensors",
|
451 |
+
"model.layers.21.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00004.safetensors",
|
452 |
+
"model.layers.21.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00004.safetensors",
|
453 |
+
"model.layers.21.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00004.safetensors",
|
454 |
+
"model.layers.21.block_sparse_moe.experts.4.w1.weight": "model-00004-of-00004.safetensors",
|
455 |
+
"model.layers.21.block_sparse_moe.experts.4.w2.weight": "model-00004-of-00004.safetensors",
|
456 |
+
"model.layers.21.block_sparse_moe.experts.4.w3.weight": "model-00004-of-00004.safetensors",
|
457 |
+
"model.layers.21.block_sparse_moe.experts.5.w1.weight": "model-00004-of-00004.safetensors",
|
458 |
+
"model.layers.21.block_sparse_moe.experts.5.w2.weight": "model-00004-of-00004.safetensors",
|
459 |
+
"model.layers.21.block_sparse_moe.experts.5.w3.weight": "model-00004-of-00004.safetensors",
|
460 |
+
"model.layers.21.block_sparse_moe.experts.6.w1.weight": "model-00004-of-00004.safetensors",
|
461 |
+
"model.layers.21.block_sparse_moe.experts.6.w2.weight": "model-00004-of-00004.safetensors",
|
462 |
+
"model.layers.21.block_sparse_moe.experts.6.w3.weight": "model-00004-of-00004.safetensors",
|
463 |
+
"model.layers.21.block_sparse_moe.experts.7.w1.weight": "model-00004-of-00004.safetensors",
|
464 |
+
"model.layers.21.block_sparse_moe.experts.7.w2.weight": "model-00004-of-00004.safetensors",
|
465 |
+
"model.layers.21.block_sparse_moe.experts.7.w3.weight": "model-00004-of-00004.safetensors",
|
466 |
+
"model.layers.21.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors",
|
467 |
+
"model.layers.21.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
468 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
469 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
470 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
471 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
472 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
473 |
+
"model.layers.22.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors",
|
474 |
+
"model.layers.22.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00004.safetensors",
|
475 |
+
"model.layers.22.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00004.safetensors",
|
476 |
+
"model.layers.22.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors",
|
477 |
+
"model.layers.22.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00004.safetensors",
|
478 |
+
"model.layers.22.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00004.safetensors",
|
479 |
+
"model.layers.22.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors",
|
480 |
+
"model.layers.22.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00004.safetensors",
|
481 |
+
"model.layers.22.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00004.safetensors",
|
482 |
+
"model.layers.22.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00004.safetensors",
|
483 |
+
"model.layers.22.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00004.safetensors",
|
484 |
+
"model.layers.22.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00004.safetensors",
|
485 |
+
"model.layers.22.block_sparse_moe.experts.4.w1.weight": "model-00004-of-00004.safetensors",
|
486 |
+
"model.layers.22.block_sparse_moe.experts.4.w2.weight": "model-00004-of-00004.safetensors",
|
487 |
+
"model.layers.22.block_sparse_moe.experts.4.w3.weight": "model-00004-of-00004.safetensors",
|
488 |
+
"model.layers.22.block_sparse_moe.experts.5.w1.weight": "model-00004-of-00004.safetensors",
|
489 |
+
"model.layers.22.block_sparse_moe.experts.5.w2.weight": "model-00004-of-00004.safetensors",
|
490 |
+
"model.layers.22.block_sparse_moe.experts.5.w3.weight": "model-00004-of-00004.safetensors",
|
491 |
+
"model.layers.22.block_sparse_moe.experts.6.w1.weight": "model-00004-of-00004.safetensors",
|
492 |
+
"model.layers.22.block_sparse_moe.experts.6.w2.weight": "model-00004-of-00004.safetensors",
|
493 |
+
"model.layers.22.block_sparse_moe.experts.6.w3.weight": "model-00004-of-00004.safetensors",
|
494 |
+
"model.layers.22.block_sparse_moe.experts.7.w1.weight": "model-00004-of-00004.safetensors",
|
495 |
+
"model.layers.22.block_sparse_moe.experts.7.w2.weight": "model-00004-of-00004.safetensors",
|
496 |
+
"model.layers.22.block_sparse_moe.experts.7.w3.weight": "model-00004-of-00004.safetensors",
|
497 |
+
"model.layers.22.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors",
|
498 |
+
"model.layers.22.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
499 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
500 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
501 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
502 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
503 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
504 |
+
"model.layers.23.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors",
|
505 |
+
"model.layers.23.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00004.safetensors",
|
506 |
+
"model.layers.23.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00004.safetensors",
|
507 |
+
"model.layers.23.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors",
|
508 |
+
"model.layers.23.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00004.safetensors",
|
509 |
+
"model.layers.23.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00004.safetensors",
|
510 |
+
"model.layers.23.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors",
|
511 |
+
"model.layers.23.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00004.safetensors",
|
512 |
+
"model.layers.23.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00004.safetensors",
|
513 |
+
"model.layers.23.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00004.safetensors",
|
514 |
+
"model.layers.23.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00004.safetensors",
|
515 |
+
"model.layers.23.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00004.safetensors",
|
516 |
+
"model.layers.23.block_sparse_moe.experts.4.w1.weight": "model-00004-of-00004.safetensors",
|
517 |
+
"model.layers.23.block_sparse_moe.experts.4.w2.weight": "model-00004-of-00004.safetensors",
|
518 |
+
"model.layers.23.block_sparse_moe.experts.4.w3.weight": "model-00004-of-00004.safetensors",
|
519 |
+
"model.layers.23.block_sparse_moe.experts.5.w1.weight": "model-00004-of-00004.safetensors",
|
520 |
+
"model.layers.23.block_sparse_moe.experts.5.w2.weight": "model-00004-of-00004.safetensors",
|
521 |
+
"model.layers.23.block_sparse_moe.experts.5.w3.weight": "model-00004-of-00004.safetensors",
|
522 |
+
"model.layers.23.block_sparse_moe.experts.6.w1.weight": "model-00004-of-00004.safetensors",
|
523 |
+
"model.layers.23.block_sparse_moe.experts.6.w2.weight": "model-00004-of-00004.safetensors",
|
524 |
+
"model.layers.23.block_sparse_moe.experts.6.w3.weight": "model-00004-of-00004.safetensors",
|
525 |
+
"model.layers.23.block_sparse_moe.experts.7.w1.weight": "model-00004-of-00004.safetensors",
|
526 |
+
"model.layers.23.block_sparse_moe.experts.7.w2.weight": "model-00004-of-00004.safetensors",
|
527 |
+
"model.layers.23.block_sparse_moe.experts.7.w3.weight": "model-00004-of-00004.safetensors",
|
528 |
+
"model.layers.23.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors",
|
529 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
530 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
531 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
532 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
533 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
534 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
535 |
+
"model.layers.3.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
|
536 |
+
"model.layers.3.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
|
537 |
+
"model.layers.3.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
|
538 |
+
"model.layers.3.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
|
539 |
+
"model.layers.3.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
|
540 |
+
"model.layers.3.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
|
541 |
+
"model.layers.3.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
|
542 |
+
"model.layers.3.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
|
543 |
+
"model.layers.3.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
|
544 |
+
"model.layers.3.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
|
545 |
+
"model.layers.3.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
|
546 |
+
"model.layers.3.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
|
547 |
+
"model.layers.3.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
|
548 |
+
"model.layers.3.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
|
549 |
+
"model.layers.3.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
|
550 |
+
"model.layers.3.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
|
551 |
+
"model.layers.3.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
|
552 |
+
"model.layers.3.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
|
553 |
+
"model.layers.3.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
|
554 |
+
"model.layers.3.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
|
555 |
+
"model.layers.3.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
|
556 |
+
"model.layers.3.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00004.safetensors",
|
557 |
+
"model.layers.3.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00004.safetensors",
|
558 |
+
"model.layers.3.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00004.safetensors",
|
559 |
+
"model.layers.3.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
|
560 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
561 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
562 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
563 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
564 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
565 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
566 |
+
"model.layers.4.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
|
567 |
+
"model.layers.4.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
|
568 |
+
"model.layers.4.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
|
569 |
+
"model.layers.4.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
|
570 |
+
"model.layers.4.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
|
571 |
+
"model.layers.4.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
|
572 |
+
"model.layers.4.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
|
573 |
+
"model.layers.4.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
|
574 |
+
"model.layers.4.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
|
575 |
+
"model.layers.4.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
|
576 |
+
"model.layers.4.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
|
577 |
+
"model.layers.4.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
|
578 |
+
"model.layers.4.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
|
579 |
+
"model.layers.4.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
|
580 |
+
"model.layers.4.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
|
581 |
+
"model.layers.4.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
|
582 |
+
"model.layers.4.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
|
583 |
+
"model.layers.4.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
|
584 |
+
"model.layers.4.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
|
585 |
+
"model.layers.4.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
|
586 |
+
"model.layers.4.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
|
587 |
+
"model.layers.4.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00004.safetensors",
|
588 |
+
"model.layers.4.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00004.safetensors",
|
589 |
+
"model.layers.4.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00004.safetensors",
|
590 |
+
"model.layers.4.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
|
591 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
592 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
593 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
594 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
595 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
596 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
597 |
+
"model.layers.5.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
|
598 |
+
"model.layers.5.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
|
599 |
+
"model.layers.5.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
|
600 |
+
"model.layers.5.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
|
601 |
+
"model.layers.5.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
|
602 |
+
"model.layers.5.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
|
603 |
+
"model.layers.5.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
|
604 |
+
"model.layers.5.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
|
605 |
+
"model.layers.5.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
|
606 |
+
"model.layers.5.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
|
607 |
+
"model.layers.5.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
|
608 |
+
"model.layers.5.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
|
609 |
+
"model.layers.5.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
|
610 |
+
"model.layers.5.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
|
611 |
+
"model.layers.5.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
|
612 |
+
"model.layers.5.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
|
613 |
+
"model.layers.5.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
|
614 |
+
"model.layers.5.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
|
615 |
+
"model.layers.5.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
|
616 |
+
"model.layers.5.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
|
617 |
+
"model.layers.5.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
|
618 |
+
"model.layers.5.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00004.safetensors",
|
619 |
+
"model.layers.5.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00004.safetensors",
|
620 |
+
"model.layers.5.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00004.safetensors",
|
621 |
+
"model.layers.5.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
|
622 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
623 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
624 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
625 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
626 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
627 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
628 |
+
"model.layers.6.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
|
629 |
+
"model.layers.6.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
|
630 |
+
"model.layers.6.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
|
631 |
+
"model.layers.6.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
|
632 |
+
"model.layers.6.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
|
633 |
+
"model.layers.6.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
|
634 |
+
"model.layers.6.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
|
635 |
+
"model.layers.6.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
|
636 |
+
"model.layers.6.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
|
637 |
+
"model.layers.6.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
|
638 |
+
"model.layers.6.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
|
639 |
+
"model.layers.6.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
|
640 |
+
"model.layers.6.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
|
641 |
+
"model.layers.6.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
|
642 |
+
"model.layers.6.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
|
643 |
+
"model.layers.6.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
|
644 |
+
"model.layers.6.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
|
645 |
+
"model.layers.6.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
|
646 |
+
"model.layers.6.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
|
647 |
+
"model.layers.6.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
|
648 |
+
"model.layers.6.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
|
649 |
+
"model.layers.6.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00004.safetensors",
|
650 |
+
"model.layers.6.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00004.safetensors",
|
651 |
+
"model.layers.6.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00004.safetensors",
|
652 |
+
"model.layers.6.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
|
653 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
654 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
655 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
656 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
657 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
658 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
659 |
+
"model.layers.7.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
|
660 |
+
"model.layers.7.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
|
661 |
+
"model.layers.7.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
|
662 |
+
"model.layers.7.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
|
663 |
+
"model.layers.7.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
|
664 |
+
"model.layers.7.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
|
665 |
+
"model.layers.7.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
|
666 |
+
"model.layers.7.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
|
667 |
+
"model.layers.7.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
|
668 |
+
"model.layers.7.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
|
669 |
+
"model.layers.7.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
|
670 |
+
"model.layers.7.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
|
671 |
+
"model.layers.7.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
|
672 |
+
"model.layers.7.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
|
673 |
+
"model.layers.7.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
|
674 |
+
"model.layers.7.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
|
675 |
+
"model.layers.7.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
|
676 |
+
"model.layers.7.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
|
677 |
+
"model.layers.7.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
|
678 |
+
"model.layers.7.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
|
679 |
+
"model.layers.7.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
|
680 |
+
"model.layers.7.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00004.safetensors",
|
681 |
+
"model.layers.7.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00004.safetensors",
|
682 |
+
"model.layers.7.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00004.safetensors",
|
683 |
+
"model.layers.7.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
|
684 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
685 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
686 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
687 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
688 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
689 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
690 |
+
"model.layers.8.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
|
691 |
+
"model.layers.8.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
|
692 |
+
"model.layers.8.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
|
693 |
+
"model.layers.8.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
|
694 |
+
"model.layers.8.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
|
695 |
+
"model.layers.8.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
|
696 |
+
"model.layers.8.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
|
697 |
+
"model.layers.8.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
|
698 |
+
"model.layers.8.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
|
699 |
+
"model.layers.8.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
|
700 |
+
"model.layers.8.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
|
701 |
+
"model.layers.8.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
|
702 |
+
"model.layers.8.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
|
703 |
+
"model.layers.8.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
|
704 |
+
"model.layers.8.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
|
705 |
+
"model.layers.8.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
|
706 |
+
"model.layers.8.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
|
707 |
+
"model.layers.8.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
|
708 |
+
"model.layers.8.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
|
709 |
+
"model.layers.8.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
|
710 |
+
"model.layers.8.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
|
711 |
+
"model.layers.8.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00004.safetensors",
|
712 |
+
"model.layers.8.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00004.safetensors",
|
713 |
+
"model.layers.8.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00004.safetensors",
|
714 |
+
"model.layers.8.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
|
715 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
716 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
717 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
718 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
719 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
720 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
721 |
+
"model.layers.9.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
|
722 |
+
"model.layers.9.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
|
723 |
+
"model.layers.9.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
|
724 |
+
"model.layers.9.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
|
725 |
+
"model.layers.9.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
|
726 |
+
"model.layers.9.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
|
727 |
+
"model.layers.9.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
|
728 |
+
"model.layers.9.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
|
729 |
+
"model.layers.9.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
|
730 |
+
"model.layers.9.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
|
731 |
+
"model.layers.9.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
|
732 |
+
"model.layers.9.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
|
733 |
+
"model.layers.9.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
|
734 |
+
"model.layers.9.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
|
735 |
+
"model.layers.9.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
|
736 |
+
"model.layers.9.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
|
737 |
+
"model.layers.9.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
|
738 |
+
"model.layers.9.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
|
739 |
+
"model.layers.9.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
|
740 |
+
"model.layers.9.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
|
741 |
+
"model.layers.9.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
|
742 |
+
"model.layers.9.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00004.safetensors",
|
743 |
+
"model.layers.9.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00004.safetensors",
|
744 |
+
"model.layers.9.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00004.safetensors",
|
745 |
+
"model.layers.9.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
|
746 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
747 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
748 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
749 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
750 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
751 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
752 |
+
"model.norm.weight": "model-00004-of-00004.safetensors"
|
753 |
+
}
|
754 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5cf3bac380addaa516f941e6a276bb95c92ecfb3c08371ff9fba4b2faac6df0
|
3 |
+
size 15024
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:219db464e75bbf2b6c41a71470b6182f4de4159f65fd71e3323fd50c658eea3a
|
3 |
+
size 15024
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03b8316374c36bf601b0d74a53807a0d460d535e42771ed5f0f6db088f66ab63
|
3 |
+
size 15024
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d6c7bdfadb70cba54ce8abee8b9fbcd1d5870419c1ccbd2e7362a47c09ba74e
|
3 |
+
size 15024
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<CLS|LLM-jp>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<MASK|LLM-jp>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<PAD|LLM-jp>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "<SEP|LLM-jp>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<MASK|LLM-jp>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"4": {
|
38 |
+
"content": "<PAD|LLM-jp>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"5": {
|
46 |
+
"content": "<CLS|LLM-jp>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"6": {
|
54 |
+
"content": "<SEP|LLM-jp>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"7": {
|
62 |
+
"content": "<EOD|LLM-jp>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
}
|
69 |
+
},
|
70 |
+
"bos_token": "<s>",
|
71 |
+
"clean_up_tokenization_spaces": false,
|
72 |
+
"cls_token": "<CLS|LLM-jp>",
|
73 |
+
"eod_token": "</s>",
|
74 |
+
"eos_token": "</s>",
|
75 |
+
"extra_ids": 0,
|
76 |
+
"mask_token": "<MASK|LLM-jp>",
|
77 |
+
"model_max_length": 1000000000000000019884624838656,
|
78 |
+
"pad_token": "<PAD|LLM-jp>",
|
79 |
+
"sep_token": "<SEP|LLM-jp>",
|
80 |
+
"sp_model_kwargs": {},
|
81 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
82 |
+
"unk_token": "<unk>"
|
83 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,758 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.2237541824579239,
|
3 |
+
"best_model_checkpoint": "../../models/moe/moe/onlyRouterTrue_aveSVLossFalse_lr5e-03_ralc0.00/checkpoint-13692",
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 3423,
|
6 |
+
"global_step": 13692,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.010005842827928718,
|
13 |
+
"grad_norm": 3.4739856719970703,
|
14 |
+
"learning_rate": 4.9987649590704944e-05,
|
15 |
+
"loss": 0.6176,
|
16 |
+
"step": 137
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.020011685655857436,
|
20 |
+
"grad_norm": 2.701633930206299,
|
21 |
+
"learning_rate": 4.9950610565428546e-05,
|
22 |
+
"loss": 0.5809,
|
23 |
+
"step": 274
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.03001752848378615,
|
27 |
+
"grad_norm": 2.7198803424835205,
|
28 |
+
"learning_rate": 4.988891951994058e-05,
|
29 |
+
"loss": 0.572,
|
30 |
+
"step": 411
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.04002337131171487,
|
34 |
+
"grad_norm": 2.594041109085083,
|
35 |
+
"learning_rate": 4.9802637407013966e-05,
|
36 |
+
"loss": 0.5511,
|
37 |
+
"step": 548
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.05002921413964359,
|
41 |
+
"grad_norm": 2.6721420288085938,
|
42 |
+
"learning_rate": 4.969184947620146e-05,
|
43 |
+
"loss": 0.5502,
|
44 |
+
"step": 685
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.0600350569675723,
|
48 |
+
"grad_norm": 2.6376290321350098,
|
49 |
+
"learning_rate": 4.9556665189606316e-05,
|
50 |
+
"loss": 0.5266,
|
51 |
+
"step": 822
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.07004089979550102,
|
55 |
+
"grad_norm": 2.9528913497924805,
|
56 |
+
"learning_rate": 4.93972181137301e-05,
|
57 |
+
"loss": 0.536,
|
58 |
+
"step": 959
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.08004674262342974,
|
62 |
+
"grad_norm": 2.715660810470581,
|
63 |
+
"learning_rate": 4.9213665787504655e-05,
|
64 |
+
"loss": 0.5056,
|
65 |
+
"step": 1096
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.09005258545135846,
|
69 |
+
"grad_norm": 3.309116840362549,
|
70 |
+
"learning_rate": 4.900618956663845e-05,
|
71 |
+
"loss": 0.5124,
|
72 |
+
"step": 1233
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.10005842827928718,
|
76 |
+
"grad_norm": 2.226123332977295,
|
77 |
+
"learning_rate": 4.877499444443122e-05,
|
78 |
+
"loss": 0.5199,
|
79 |
+
"step": 1370
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.1100642711072159,
|
83 |
+
"grad_norm": 3.922006130218506,
|
84 |
+
"learning_rate": 4.852030884923388e-05,
|
85 |
+
"loss": 0.4957,
|
86 |
+
"step": 1507
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.1200701139351446,
|
90 |
+
"grad_norm": 3.2229082584381104,
|
91 |
+
"learning_rate": 4.82423844187538e-05,
|
92 |
+
"loss": 0.4864,
|
93 |
+
"step": 1644
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.13007595676307332,
|
97 |
+
"grad_norm": 1.936515212059021,
|
98 |
+
"learning_rate": 4.7941495751428536e-05,
|
99 |
+
"loss": 0.4653,
|
100 |
+
"step": 1781
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.14008179959100203,
|
104 |
+
"grad_norm": 2.966193199157715,
|
105 |
+
"learning_rate": 4.7617940135113606e-05,
|
106 |
+
"loss": 0.4722,
|
107 |
+
"step": 1918
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.15008764241893077,
|
111 |
+
"grad_norm": 3.2486863136291504,
|
112 |
+
"learning_rate": 4.7272037253352276e-05,
|
113 |
+
"loss": 0.4477,
|
114 |
+
"step": 2055
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.16009348524685948,
|
118 |
+
"grad_norm": 2.4895386695861816,
|
119 |
+
"learning_rate": 4.690412886951786e-05,
|
120 |
+
"loss": 0.4657,
|
121 |
+
"step": 2192
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.1700993280747882,
|
125 |
+
"grad_norm": 2.049923896789551,
|
126 |
+
"learning_rate": 4.651457848914021e-05,
|
127 |
+
"loss": 0.4538,
|
128 |
+
"step": 2329
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.1801051709027169,
|
132 |
+
"grad_norm": 2.0172815322875977,
|
133 |
+
"learning_rate": 4.610377100075045e-05,
|
134 |
+
"loss": 0.4317,
|
135 |
+
"step": 2466
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.19011101373064562,
|
139 |
+
"grad_norm": 2.2022132873535156,
|
140 |
+
"learning_rate": 4.5672112295598404e-05,
|
141 |
+
"loss": 0.4336,
|
142 |
+
"step": 2603
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.20011685655857436,
|
146 |
+
"grad_norm": 4.102416038513184,
|
147 |
+
"learning_rate": 4.5220028866618837e-05,
|
148 |
+
"loss": 0.4226,
|
149 |
+
"step": 2740
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.21012269938650308,
|
153 |
+
"grad_norm": 2.130418539047241,
|
154 |
+
"learning_rate": 4.4747967387042424e-05,
|
155 |
+
"loss": 0.4242,
|
156 |
+
"step": 2877
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.2201285422144318,
|
160 |
+
"grad_norm": 2.399773120880127,
|
161 |
+
"learning_rate": 4.4256394269067967e-05,
|
162 |
+
"loss": 0.4097,
|
163 |
+
"step": 3014
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.2301343850423605,
|
167 |
+
"grad_norm": 1.86017644405365,
|
168 |
+
"learning_rate": 4.3745795203031904e-05,
|
169 |
+
"loss": 0.4034,
|
170 |
+
"step": 3151
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.2401402278702892,
|
174 |
+
"grad_norm": 1.667731761932373,
|
175 |
+
"learning_rate": 4.321667467753034e-05,
|
176 |
+
"loss": 0.4108,
|
177 |
+
"step": 3288
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.25,
|
181 |
+
"eval_loss": 0.48173779249191284,
|
182 |
+
"eval_runtime": 367.5367,
|
183 |
+
"eval_samples_per_second": 31.393,
|
184 |
+
"eval_steps_per_second": 7.85,
|
185 |
+
"step": 3423
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.2501460706982179,
|
189 |
+
"grad_norm": 5.194522857666016,
|
190 |
+
"learning_rate": 4.2669555480967783e-05,
|
191 |
+
"loss": 0.3973,
|
192 |
+
"step": 3425
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.26015191352614664,
|
196 |
+
"grad_norm": 2.7280290126800537,
|
197 |
+
"learning_rate": 4.210497818502509e-05,
|
198 |
+
"loss": 0.409,
|
199 |
+
"step": 3562
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.27015775635407535,
|
203 |
+
"grad_norm": 2.3584136962890625,
|
204 |
+
"learning_rate": 4.152350061055695e-05,
|
205 |
+
"loss": 0.3855,
|
206 |
+
"step": 3699
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.28016359918200406,
|
210 |
+
"grad_norm": 3.4275765419006348,
|
211 |
+
"learning_rate": 4.092569727644661e-05,
|
212 |
+
"loss": 0.4029,
|
213 |
+
"step": 3836
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.29016944200993283,
|
217 |
+
"grad_norm": 2.14209246635437,
|
218 |
+
"learning_rate": 4.031215883196239e-05,
|
219 |
+
"loss": 0.3836,
|
220 |
+
"step": 3973
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.30017528483786154,
|
224 |
+
"grad_norm": 2.825669288635254,
|
225 |
+
"learning_rate": 3.968349147317693e-05,
|
226 |
+
"loss": 0.3842,
|
227 |
+
"step": 4110
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.31018112766579026,
|
231 |
+
"grad_norm": 2.3074870109558105,
|
232 |
+
"learning_rate": 3.904031634402552e-05,
|
233 |
+
"loss": 0.3601,
|
234 |
+
"step": 4247
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.32018697049371897,
|
238 |
+
"grad_norm": 2.8916587829589844,
|
239 |
+
"learning_rate": 3.838326892259564e-05,
|
240 |
+
"loss": 0.38,
|
241 |
+
"step": 4384
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.3301928133216477,
|
245 |
+
"grad_norm": 1.9778506755828857,
|
246 |
+
"learning_rate": 3.7712998393253786e-05,
|
247 |
+
"loss": 0.3611,
|
248 |
+
"step": 4521
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.3401986561495764,
|
252 |
+
"grad_norm": 2.735363721847534,
|
253 |
+
"learning_rate": 3.703016700522999e-05,
|
254 |
+
"loss": 0.3653,
|
255 |
+
"step": 4658
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.3502044989775051,
|
259 |
+
"grad_norm": 3.4953627586364746,
|
260 |
+
"learning_rate": 3.6335449418293985e-05,
|
261 |
+
"loss": 0.3754,
|
262 |
+
"step": 4795
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.3602103418054338,
|
266 |
+
"grad_norm": 4.839205265045166,
|
267 |
+
"learning_rate": 3.562953203616925e-05,
|
268 |
+
"loss": 0.3468,
|
269 |
+
"step": 4932
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.37021618463336253,
|
273 |
+
"grad_norm": 2.1916751861572266,
|
274 |
+
"learning_rate": 3.491311232834357e-05,
|
275 |
+
"loss": 0.3524,
|
276 |
+
"step": 5069
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.38022202746129125,
|
280 |
+
"grad_norm": 3.1856038570404053,
|
281 |
+
"learning_rate": 3.418689814094646e-05,
|
282 |
+
"loss": 0.3501,
|
283 |
+
"step": 5206
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.39022787028921996,
|
287 |
+
"grad_norm": 1.9597059488296509,
|
288 |
+
"learning_rate": 3.345160699737394e-05,
|
289 |
+
"loss": 0.3474,
|
290 |
+
"step": 5343
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.4002337131171487,
|
294 |
+
"grad_norm": 2.523240566253662,
|
295 |
+
"learning_rate": 3.2707965389351925e-05,
|
296 |
+
"loss": 0.3355,
|
297 |
+
"step": 5480
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.41023955594507744,
|
301 |
+
"grad_norm": 16.007722854614258,
|
302 |
+
"learning_rate": 3.195670805913866e-05,
|
303 |
+
"loss": 0.3285,
|
304 |
+
"step": 5617
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.42024539877300615,
|
308 |
+
"grad_norm": 4.493948936462402,
|
309 |
+
"learning_rate": 3.119857727357527e-05,
|
310 |
+
"loss": 0.3232,
|
311 |
+
"step": 5754
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.43025124160093486,
|
315 |
+
"grad_norm": 3.0784451961517334,
|
316 |
+
"learning_rate": 3.0434322090701827e-05,
|
317 |
+
"loss": 0.3264,
|
318 |
+
"step": 5891
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.4402570844288636,
|
322 |
+
"grad_norm": 2.9652538299560547,
|
323 |
+
"learning_rate": 2.9664697619663472e-05,
|
324 |
+
"loss": 0.3147,
|
325 |
+
"step": 6028
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.4502629272567923,
|
329 |
+
"grad_norm": 2.1190903186798096,
|
330 |
+
"learning_rate": 2.8890464274637876e-05,
|
331 |
+
"loss": 0.3096,
|
332 |
+
"step": 6165
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.460268770084721,
|
336 |
+
"grad_norm": 7.0982985496521,
|
337 |
+
"learning_rate": 2.8112387023521115e-05,
|
338 |
+
"loss": 0.2968,
|
339 |
+
"step": 6302
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.4702746129126497,
|
343 |
+
"grad_norm": 1.3744592666625977,
|
344 |
+
"learning_rate": 2.733123463211434e-05,
|
345 |
+
"loss": 0.3036,
|
346 |
+
"step": 6439
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.4802804557405784,
|
350 |
+
"grad_norm": 1.526167631149292,
|
351 |
+
"learning_rate": 2.6547778904558018e-05,
|
352 |
+
"loss": 0.3069,
|
353 |
+
"step": 6576
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.49028629856850714,
|
357 |
+
"grad_norm": 1.452222466468811,
|
358 |
+
"learning_rate": 2.5762793920764124e-05,
|
359 |
+
"loss": 0.2992,
|
360 |
+
"step": 6713
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.5,
|
364 |
+
"eval_loss": 0.3556436002254486,
|
365 |
+
"eval_runtime": 367.6162,
|
366 |
+
"eval_samples_per_second": 31.386,
|
367 |
+
"eval_steps_per_second": 7.848,
|
368 |
+
"step": 6846
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.5002921413964359,
|
372 |
+
"grad_norm": 2.3508574962615967,
|
373 |
+
"learning_rate": 2.4977055271599893e-05,
|
374 |
+
"loss": 0.2923,
|
375 |
+
"step": 6850
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.5102979842243646,
|
379 |
+
"grad_norm": 2.161405324935913,
|
380 |
+
"learning_rate": 2.4191339292578617e-05,
|
381 |
+
"loss": 0.2866,
|
382 |
+
"step": 6987
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"epoch": 0.5203038270522933,
|
386 |
+
"grad_norm": 1.180467963218689,
|
387 |
+
"learning_rate": 2.340642229681474e-05,
|
388 |
+
"loss": 0.2874,
|
389 |
+
"step": 7124
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.530309669880222,
|
393 |
+
"grad_norm": 2.1960806846618652,
|
394 |
+
"learning_rate": 2.262307980800109e-05,
|
395 |
+
"loss": 0.2649,
|
396 |
+
"step": 7261
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 0.5403155127081507,
|
400 |
+
"grad_norm": 1.662766933441162,
|
401 |
+
"learning_rate": 2.1842085794166068e-05,
|
402 |
+
"loss": 0.268,
|
403 |
+
"step": 7398
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 0.5503213555360794,
|
407 |
+
"grad_norm": 1.6623494625091553,
|
408 |
+
"learning_rate": 2.1064211902967904e-05,
|
409 |
+
"loss": 0.2538,
|
410 |
+
"step": 7535
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.5603271983640081,
|
414 |
+
"grad_norm": 1.6007744073867798,
|
415 |
+
"learning_rate": 2.02902266992815e-05,
|
416 |
+
"loss": 0.2654,
|
417 |
+
"step": 7672
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.570333041191937,
|
421 |
+
"grad_norm": 2.0483551025390625,
|
422 |
+
"learning_rate": 1.9520894905831154e-05,
|
423 |
+
"loss": 0.2567,
|
424 |
+
"step": 7809
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"epoch": 0.5803388840198657,
|
428 |
+
"grad_norm": 1.1370702981948853,
|
429 |
+
"learning_rate": 1.8756976647619502e-05,
|
430 |
+
"loss": 0.2558,
|
431 |
+
"step": 7946
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.5903447268477944,
|
435 |
+
"grad_norm": 1.3925893306732178,
|
436 |
+
"learning_rate": 1.7999226700899093e-05,
|
437 |
+
"loss": 0.239,
|
438 |
+
"step": 8083
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 0.6003505696757231,
|
442 |
+
"grad_norm": 1.1552609205245972,
|
443 |
+
"learning_rate": 1.7248393747428747e-05,
|
444 |
+
"loss": 0.2389,
|
445 |
+
"step": 8220
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 0.6103564125036518,
|
449 |
+
"grad_norm": 1.9827595949172974,
|
450 |
+
"learning_rate": 1.6505219634751472e-05,
|
451 |
+
"loss": 0.2439,
|
452 |
+
"step": 8357
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.6203622553315805,
|
456 |
+
"grad_norm": 1.7899774312973022,
|
457 |
+
"learning_rate": 1.5770438643224794e-05,
|
458 |
+
"loss": 0.2471,
|
459 |
+
"step": 8494
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.6303680981595092,
|
463 |
+
"grad_norm": 1.239159345626831,
|
464 |
+
"learning_rate": 1.5044776760527727e-05,
|
465 |
+
"loss": 0.2329,
|
466 |
+
"step": 8631
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 0.6403739409874379,
|
470 |
+
"grad_norm": 1.22818922996521,
|
471 |
+
"learning_rate": 1.4328950964361143e-05,
|
472 |
+
"loss": 0.2316,
|
473 |
+
"step": 8768
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.6503797838153667,
|
477 |
+
"grad_norm": 1.210986614227295,
|
478 |
+
"learning_rate": 1.3623668514050391e-05,
|
479 |
+
"loss": 0.2221,
|
480 |
+
"step": 8905
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"epoch": 0.6603856266432954,
|
484 |
+
"grad_norm": 3.446089506149292,
|
485 |
+
"learning_rate": 1.2929626251749854e-05,
|
486 |
+
"loss": 0.2269,
|
487 |
+
"step": 9042
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"epoch": 0.6703914694712241,
|
491 |
+
"grad_norm": 2.4413158893585205,
|
492 |
+
"learning_rate": 1.2247509913940128e-05,
|
493 |
+
"loss": 0.2209,
|
494 |
+
"step": 9179
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.6803973122991528,
|
498 |
+
"grad_norm": 1.9606636762619019,
|
499 |
+
"learning_rate": 1.1577993453897933e-05,
|
500 |
+
"loss": 0.221,
|
501 |
+
"step": 9316
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.6904031551270815,
|
505 |
+
"grad_norm": 0.8826603293418884,
|
506 |
+
"learning_rate": 1.0921738375808166e-05,
|
507 |
+
"loss": 0.2041,
|
508 |
+
"step": 9453
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 0.7004089979550102,
|
512 |
+
"grad_norm": 1.2856823205947876,
|
513 |
+
"learning_rate": 1.0279393081176122e-05,
|
514 |
+
"loss": 0.2022,
|
515 |
+
"step": 9590
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 0.7104148407829389,
|
519 |
+
"grad_norm": 0.5094468593597412,
|
520 |
+
"learning_rate": 9.651592228185622e-06,
|
521 |
+
"loss": 0.2023,
|
522 |
+
"step": 9727
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 0.7204206836108676,
|
526 |
+
"grad_norm": 1.4797954559326172,
|
527 |
+
"learning_rate": 9.038956104635871e-06,
|
528 |
+
"loss": 0.1961,
|
529 |
+
"step": 9864
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 0.7304265264387964,
|
533 |
+
"grad_norm": 1.850120186805725,
|
534 |
+
"learning_rate": 8.442090015076842e-06,
|
535 |
+
"loss": 0.2063,
|
536 |
+
"step": 10001
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.7404323692667251,
|
540 |
+
"grad_norm": 1.438025712966919,
|
541 |
+
"learning_rate": 7.861583682748586e-06,
|
542 |
+
"loss": 0.1903,
|
543 |
+
"step": 10138
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.75,
|
547 |
+
"eval_loss": 0.254038542509079,
|
548 |
+
"eval_runtime": 367.4989,
|
549 |
+
"eval_samples_per_second": 31.396,
|
550 |
+
"eval_steps_per_second": 7.85,
|
551 |
+
"step": 10269
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"epoch": 0.7504382120946538,
|
555 |
+
"grad_norm": 1.2179102897644043,
|
556 |
+
"learning_rate": 7.298010666915303e-06,
|
557 |
+
"loss": 0.1885,
|
558 |
+
"step": 10275
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"epoch": 0.7604440549225825,
|
562 |
+
"grad_norm": 1.099284291267395,
|
563 |
+
"learning_rate": 6.751927796170044e-06,
|
564 |
+
"loss": 0.2005,
|
565 |
+
"step": 10412
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"epoch": 0.7704498977505112,
|
569 |
+
"grad_norm": 1.2008761167526245,
|
570 |
+
"learning_rate": 6.2238746182698375e-06,
|
571 |
+
"loss": 0.1702,
|
572 |
+
"step": 10549
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.7804557405784399,
|
576 |
+
"grad_norm": 1.5368109941482544,
|
577 |
+
"learning_rate": 5.7143728670448095e-06,
|
578 |
+
"loss": 0.1947,
|
579 |
+
"step": 10686
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.7904615834063686,
|
583 |
+
"grad_norm": 1.0241951942443848,
|
584 |
+
"learning_rate": 5.223925946908093e-06,
|
585 |
+
"loss": 0.1809,
|
586 |
+
"step": 10823
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 0.8004674262342975,
|
590 |
+
"grad_norm": 1.369369387626648,
|
591 |
+
"learning_rate": 4.7530184354757675e-06,
|
592 |
+
"loss": 0.1889,
|
593 |
+
"step": 10960
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 0.8104732690622262,
|
597 |
+
"grad_norm": 0.7070077061653137,
|
598 |
+
"learning_rate": 4.30211560478837e-06,
|
599 |
+
"loss": 0.1796,
|
600 |
+
"step": 11097
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"epoch": 0.8204791118901549,
|
604 |
+
"grad_norm": 1.7389978170394897,
|
605 |
+
"learning_rate": 3.871662961606784e-06,
|
606 |
+
"loss": 0.1843,
|
607 |
+
"step": 11234
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"epoch": 0.8304849547180836,
|
611 |
+
"grad_norm": 0.9540761709213257,
|
612 |
+
"learning_rate": 3.4620858072370504e-06,
|
613 |
+
"loss": 0.1764,
|
614 |
+
"step": 11371
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.8404907975460123,
|
618 |
+
"grad_norm": 1.6178034543991089,
|
619 |
+
"learning_rate": 3.073788817318707e-06,
|
620 |
+
"loss": 0.1785,
|
621 |
+
"step": 11508
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.850496640373941,
|
625 |
+
"grad_norm": 1.0763949155807495,
|
626 |
+
"learning_rate": 2.7071556419920514e-06,
|
627 |
+
"loss": 0.1715,
|
628 |
+
"step": 11645
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"epoch": 0.8605024832018697,
|
632 |
+
"grad_norm": 1.0416216850280762,
|
633 |
+
"learning_rate": 2.3625485268391893e-06,
|
634 |
+
"loss": 0.1609,
|
635 |
+
"step": 11782
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"epoch": 0.8705083260297984,
|
639 |
+
"grad_norm": 1.1292046308517456,
|
640 |
+
"learning_rate": 2.040307954973572e-06,
|
641 |
+
"loss": 0.1739,
|
642 |
+
"step": 11919
|
643 |
+
},
|
644 |
+
{
|
645 |
+
"epoch": 0.8805141688577272,
|
646 |
+
"grad_norm": 1.6674988269805908,
|
647 |
+
"learning_rate": 1.7407523106315244e-06,
|
648 |
+
"loss": 0.155,
|
649 |
+
"step": 12056
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 0.8905200116856559,
|
653 |
+
"grad_norm": 0.8487703800201416,
|
654 |
+
"learning_rate": 1.4641775645981849e-06,
|
655 |
+
"loss": 0.1687,
|
656 |
+
"step": 12193
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.9005258545135846,
|
660 |
+
"grad_norm": 0.9765934944152832,
|
661 |
+
"learning_rate": 1.210856981778688e-06,
|
662 |
+
"loss": 0.1561,
|
663 |
+
"step": 12330
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.9105316973415133,
|
667 |
+
"grad_norm": 0.9121004343032837,
|
668 |
+
"learning_rate": 9.810408512034908e-07,
|
669 |
+
"loss": 0.1621,
|
670 |
+
"step": 12467
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"epoch": 0.920537540169442,
|
674 |
+
"grad_norm": 1.1236246824264526,
|
675 |
+
"learning_rate": 7.749562387346088e-07,
|
676 |
+
"loss": 0.1749,
|
677 |
+
"step": 12604
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"epoch": 0.9305433829973707,
|
681 |
+
"grad_norm": 1.0239607095718384,
|
682 |
+
"learning_rate": 5.928067627171158e-07,
|
683 |
+
"loss": 0.165,
|
684 |
+
"step": 12741
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 0.9405492258252994,
|
688 |
+
"grad_norm": 1.127655029296875,
|
689 |
+
"learning_rate": 4.347723927975417e-07,
|
690 |
+
"loss": 0.1662,
|
691 |
+
"step": 12878
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 0.9505550686532281,
|
695 |
+
"grad_norm": 0.9149182438850403,
|
696 |
+
"learning_rate": 3.01009272107991e-07,
|
697 |
+
"loss": 0.164,
|
698 |
+
"step": 13015
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.9605609114811569,
|
702 |
+
"grad_norm": 1.0919889211654663,
|
703 |
+
"learning_rate": 1.9164956299158322e-07,
|
704 |
+
"loss": 0.1723,
|
705 |
+
"step": 13152
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.9705667543090856,
|
709 |
+
"grad_norm": 2.5338237285614014,
|
710 |
+
"learning_rate": 1.0680131642176183e-07,
|
711 |
+
"loss": 0.1584,
|
712 |
+
"step": 13289
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"epoch": 0.9805725971370143,
|
716 |
+
"grad_norm": 0.7331089377403259,
|
717 |
+
"learning_rate": 4.6548365244375446e-08,
|
718 |
+
"loss": 0.17,
|
719 |
+
"step": 13426
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"epoch": 0.990578439964943,
|
723 |
+
"grad_norm": 1.282274603843689,
|
724 |
+
"learning_rate": 1.0950241348084422e-08,
|
725 |
+
"loss": 0.1564,
|
726 |
+
"step": 13563
|
727 |
+
},
|
728 |
+
{
|
729 |
+
"epoch": 1.0,
|
730 |
+
"eval_loss": 0.2237541824579239,
|
731 |
+
"eval_runtime": 366.8443,
|
732 |
+
"eval_samples_per_second": 31.452,
|
733 |
+
"eval_steps_per_second": 7.864,
|
734 |
+
"step": 13692
|
735 |
+
}
|
736 |
+
],
|
737 |
+
"logging_steps": 137,
|
738 |
+
"max_steps": 13692,
|
739 |
+
"num_input_tokens_seen": 0,
|
740 |
+
"num_train_epochs": 1,
|
741 |
+
"save_steps": 3423,
|
742 |
+
"stateful_callbacks": {
|
743 |
+
"TrainerControl": {
|
744 |
+
"args": {
|
745 |
+
"should_epoch_stop": false,
|
746 |
+
"should_evaluate": false,
|
747 |
+
"should_log": false,
|
748 |
+
"should_save": true,
|
749 |
+
"should_training_stop": true
|
750 |
+
},
|
751 |
+
"attributes": {}
|
752 |
+
}
|
753 |
+
},
|
754 |
+
"total_flos": 2.405329205216464e+19,
|
755 |
+
"train_batch_size": 2,
|
756 |
+
"trial_name": null,
|
757 |
+
"trial_params": null
|
758 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f587753ccef3612b7d0f7899e81af61598b3e06ec3aaf4ff41332eed819d9e8
|
3 |
+
size 7416
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|