Eiki commited on
Commit
4deb787
·
verified ·
1 Parent(s): 7613ba5

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../../models/moe/routing/onlyRouterTrue_aveSVLossFalse_lr5e-03",
3
+ "architectures": [
4
+ "MixtralForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 2048,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 7168,
15
+ "max_position_embeddings": 4096,
16
+ "mlp_bias": false,
17
+ "model_type": "mixtral",
18
+ "num_attention_heads": 16,
19
+ "num_experts_per_tok": 2,
20
+ "num_hidden_layers": 24,
21
+ "num_key_value_heads": 16,
22
+ "num_local_experts": 8,
23
+ "output_router_logits": true,
24
+ "pretraining_tp": 1,
25
+ "rms_norm_eps": 1e-05,
26
+ "rope_scaling": null,
27
+ "rope_theta": 10000,
28
+ "router_aux_loss_coef": 0.0,
29
+ "router_jitter_noise": 0.0,
30
+ "sliding_window": null,
31
+ "tie_word_embeddings": false,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.46.0",
34
+ "use_cache": true,
35
+ "vocab_size": 99584
36
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.46.0"
6
+ }
global_step13692/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d676431d531aebb07dbfafb4fba53176e6ac28959f36c84ef80659f6260c325
3
+ size 27800298620
global_step13692/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37e9b557b5a1ad0e487aa7f8adb5eed53764b57c5b9c10424ee93d200d3bf645
3
+ size 27800300284
global_step13692/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08f389447f17a8966fee8f29c93f763e72f4e28f585ecd31cc15526d368eb695
3
+ size 27800300476
global_step13692/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6d4ac4b6cd45e84c57c9abcc65461182324715f9a711ed25ca5bde03cc3f529
3
+ size 27800298684
global_step13692/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e952ef57c2bd4c5a694e079c24a4e90660ce31dfe2cabd83fbce4135c1ada1b7
3
+ size 18533781408
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step13692
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61351c91a915689400aeb5f9a41b0a0d601706ad0fba739ad9f7d51e38d9e43b
3
+ size 4988379392
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09d4aea22fe1e0ace2aa78b880f8e26baf0fc1c1a8756d5805a30679799aa098
3
+ size 4987299352
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1b7e202b6a0a2c9aa482321ad9315891a3b79e7b6d8d57a9c8a28bc4e8f98e3
3
+ size 4991535416
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff9af63037c8a97b40004960955d22f5de9391211a71e9383832ab8d2683ebb8
3
+ size 3566400304
model.safetensors.index.json ADDED
@@ -0,0 +1,754 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 18533519360
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.0.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.0.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.0.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.0.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.0.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.0.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.0.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.0.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.0.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
29
+ "model.layers.0.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.0.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00004.safetensors",
31
+ "model.layers.0.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.0.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
33
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
34
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
35
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
36
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
37
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
38
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
39
+ "model.layers.1.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
40
+ "model.layers.1.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
41
+ "model.layers.1.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
42
+ "model.layers.1.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
43
+ "model.layers.1.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
44
+ "model.layers.1.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
45
+ "model.layers.1.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
46
+ "model.layers.1.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
47
+ "model.layers.1.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
48
+ "model.layers.1.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
49
+ "model.layers.1.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
50
+ "model.layers.1.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
51
+ "model.layers.1.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
52
+ "model.layers.1.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
53
+ "model.layers.1.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
54
+ "model.layers.1.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
55
+ "model.layers.1.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
56
+ "model.layers.1.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
57
+ "model.layers.1.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
58
+ "model.layers.1.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
59
+ "model.layers.1.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
60
+ "model.layers.1.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00004.safetensors",
61
+ "model.layers.1.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00004.safetensors",
62
+ "model.layers.1.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00004.safetensors",
63
+ "model.layers.1.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
64
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
65
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
66
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
67
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
68
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
69
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
70
+ "model.layers.10.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.10.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.10.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.10.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.10.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.10.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.10.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.10.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.10.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.10.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.10.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.10.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.10.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.10.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.10.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.10.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.10.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.10.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.10.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.10.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.10.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.10.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.10.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.10.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.10.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.11.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.11.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.11.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.11.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.11.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.11.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.11.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.11.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.11.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.11.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.11.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.11.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.11.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.11.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.11.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.11.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.11.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.11.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.11.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.11.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.11.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
122
+ "model.layers.11.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.11.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.11.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00004.safetensors",
125
+ "model.layers.11.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
130
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.12.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.12.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.12.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.12.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.12.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
137
+ "model.layers.12.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.12.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
139
+ "model.layers.12.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.12.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
141
+ "model.layers.12.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
142
+ "model.layers.12.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
143
+ "model.layers.12.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
144
+ "model.layers.12.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
145
+ "model.layers.12.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
146
+ "model.layers.12.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
147
+ "model.layers.12.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
148
+ "model.layers.12.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
149
+ "model.layers.12.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
150
+ "model.layers.12.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
151
+ "model.layers.12.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
152
+ "model.layers.12.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
153
+ "model.layers.12.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00004.safetensors",
154
+ "model.layers.12.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00004.safetensors",
155
+ "model.layers.12.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.12.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
157
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
160
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
161
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
162
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
163
+ "model.layers.13.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.13.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.13.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.13.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.13.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.13.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.13.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.13.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.13.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.13.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.13.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.13.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.13.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.13.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.13.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.13.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.13.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.13.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.13.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.13.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.13.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.13.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.13.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.13.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.13.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.13.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.14.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.14.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.14.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.14.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.14.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.14.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.14.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.14.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.14.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.14.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.14.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.14.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.14.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.14.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.14.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.14.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.14.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.14.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.14.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.14.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.14.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.14.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.14.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.14.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00004.safetensors",
218
+ "model.layers.14.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.14.input_layernorm.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
221
+ "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
223
+ "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.15.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.15.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.15.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.15.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.15.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.15.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.15.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.15.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.15.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.15.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
235
+ "model.layers.15.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.15.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.15.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.15.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.15.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.15.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.15.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.15.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.15.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.15.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
245
+ "model.layers.15.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.15.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00004.safetensors",
247
+ "model.layers.15.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.15.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.15.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
254
+ "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.16.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
257
+ "model.layers.16.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.16.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
259
+ "model.layers.16.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.16.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
261
+ "model.layers.16.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
262
+ "model.layers.16.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
263
+ "model.layers.16.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
264
+ "model.layers.16.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
265
+ "model.layers.16.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
266
+ "model.layers.16.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
267
+ "model.layers.16.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
268
+ "model.layers.16.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
269
+ "model.layers.16.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
270
+ "model.layers.16.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
271
+ "model.layers.16.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
272
+ "model.layers.16.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
273
+ "model.layers.16.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
274
+ "model.layers.16.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
275
+ "model.layers.16.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
276
+ "model.layers.16.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
277
+ "model.layers.16.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00004.safetensors",
278
+ "model.layers.16.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00004.safetensors",
279
+ "model.layers.16.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00004.safetensors",
280
+ "model.layers.16.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
281
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
282
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
283
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
284
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
285
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
286
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
287
+ "model.layers.17.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
288
+ "model.layers.17.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
289
+ "model.layers.17.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
290
+ "model.layers.17.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
291
+ "model.layers.17.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
292
+ "model.layers.17.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
293
+ "model.layers.17.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
294
+ "model.layers.17.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
295
+ "model.layers.17.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
296
+ "model.layers.17.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
297
+ "model.layers.17.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
298
+ "model.layers.17.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
299
+ "model.layers.17.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
300
+ "model.layers.17.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
301
+ "model.layers.17.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
302
+ "model.layers.17.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
303
+ "model.layers.17.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
304
+ "model.layers.17.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
305
+ "model.layers.17.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
306
+ "model.layers.17.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
307
+ "model.layers.17.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
308
+ "model.layers.17.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00004.safetensors",
309
+ "model.layers.17.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00004.safetensors",
310
+ "model.layers.17.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00004.safetensors",
311
+ "model.layers.17.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
312
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
313
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
314
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
315
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
316
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
317
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
318
+ "model.layers.18.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
319
+ "model.layers.18.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
320
+ "model.layers.18.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
321
+ "model.layers.18.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
322
+ "model.layers.18.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
323
+ "model.layers.18.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
324
+ "model.layers.18.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
325
+ "model.layers.18.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
326
+ "model.layers.18.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
327
+ "model.layers.18.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
328
+ "model.layers.18.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
329
+ "model.layers.18.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
330
+ "model.layers.18.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
331
+ "model.layers.18.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
332
+ "model.layers.18.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
333
+ "model.layers.18.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
334
+ "model.layers.18.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
335
+ "model.layers.18.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
336
+ "model.layers.18.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
337
+ "model.layers.18.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
338
+ "model.layers.18.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
339
+ "model.layers.18.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00004.safetensors",
340
+ "model.layers.18.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00004.safetensors",
341
+ "model.layers.18.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00004.safetensors",
342
+ "model.layers.18.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
343
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
344
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
345
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
346
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
347
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
348
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
349
+ "model.layers.19.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
350
+ "model.layers.19.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
351
+ "model.layers.19.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
352
+ "model.layers.19.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
353
+ "model.layers.19.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
354
+ "model.layers.19.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
355
+ "model.layers.19.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
356
+ "model.layers.19.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
357
+ "model.layers.19.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
358
+ "model.layers.19.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
359
+ "model.layers.19.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
360
+ "model.layers.19.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
361
+ "model.layers.19.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
362
+ "model.layers.19.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
363
+ "model.layers.19.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
364
+ "model.layers.19.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
365
+ "model.layers.19.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
366
+ "model.layers.19.block_sparse_moe.experts.5.w3.weight": "model-00004-of-00004.safetensors",
367
+ "model.layers.19.block_sparse_moe.experts.6.w1.weight": "model-00004-of-00004.safetensors",
368
+ "model.layers.19.block_sparse_moe.experts.6.w2.weight": "model-00004-of-00004.safetensors",
369
+ "model.layers.19.block_sparse_moe.experts.6.w3.weight": "model-00004-of-00004.safetensors",
370
+ "model.layers.19.block_sparse_moe.experts.7.w1.weight": "model-00004-of-00004.safetensors",
371
+ "model.layers.19.block_sparse_moe.experts.7.w2.weight": "model-00004-of-00004.safetensors",
372
+ "model.layers.19.block_sparse_moe.experts.7.w3.weight": "model-00004-of-00004.safetensors",
373
+ "model.layers.19.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
374
+ "model.layers.19.input_layernorm.weight": "model-00004-of-00004.safetensors",
375
+ "model.layers.19.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
376
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
377
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
378
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
379
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
380
+ "model.layers.2.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
381
+ "model.layers.2.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
382
+ "model.layers.2.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
383
+ "model.layers.2.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
384
+ "model.layers.2.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
385
+ "model.layers.2.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
386
+ "model.layers.2.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
387
+ "model.layers.2.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
388
+ "model.layers.2.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
389
+ "model.layers.2.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
390
+ "model.layers.2.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
391
+ "model.layers.2.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
392
+ "model.layers.2.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
393
+ "model.layers.2.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
394
+ "model.layers.2.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
395
+ "model.layers.2.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
396
+ "model.layers.2.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
397
+ "model.layers.2.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
398
+ "model.layers.2.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
399
+ "model.layers.2.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
400
+ "model.layers.2.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
401
+ "model.layers.2.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00004.safetensors",
402
+ "model.layers.2.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00004.safetensors",
403
+ "model.layers.2.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00004.safetensors",
404
+ "model.layers.2.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
405
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
406
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
407
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
408
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
409
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
410
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
411
+ "model.layers.20.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors",
412
+ "model.layers.20.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00004.safetensors",
413
+ "model.layers.20.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00004.safetensors",
414
+ "model.layers.20.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors",
415
+ "model.layers.20.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00004.safetensors",
416
+ "model.layers.20.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00004.safetensors",
417
+ "model.layers.20.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors",
418
+ "model.layers.20.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00004.safetensors",
419
+ "model.layers.20.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00004.safetensors",
420
+ "model.layers.20.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00004.safetensors",
421
+ "model.layers.20.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00004.safetensors",
422
+ "model.layers.20.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00004.safetensors",
423
+ "model.layers.20.block_sparse_moe.experts.4.w1.weight": "model-00004-of-00004.safetensors",
424
+ "model.layers.20.block_sparse_moe.experts.4.w2.weight": "model-00004-of-00004.safetensors",
425
+ "model.layers.20.block_sparse_moe.experts.4.w3.weight": "model-00004-of-00004.safetensors",
426
+ "model.layers.20.block_sparse_moe.experts.5.w1.weight": "model-00004-of-00004.safetensors",
427
+ "model.layers.20.block_sparse_moe.experts.5.w2.weight": "model-00004-of-00004.safetensors",
428
+ "model.layers.20.block_sparse_moe.experts.5.w3.weight": "model-00004-of-00004.safetensors",
429
+ "model.layers.20.block_sparse_moe.experts.6.w1.weight": "model-00004-of-00004.safetensors",
430
+ "model.layers.20.block_sparse_moe.experts.6.w2.weight": "model-00004-of-00004.safetensors",
431
+ "model.layers.20.block_sparse_moe.experts.6.w3.weight": "model-00004-of-00004.safetensors",
432
+ "model.layers.20.block_sparse_moe.experts.7.w1.weight": "model-00004-of-00004.safetensors",
433
+ "model.layers.20.block_sparse_moe.experts.7.w2.weight": "model-00004-of-00004.safetensors",
434
+ "model.layers.20.block_sparse_moe.experts.7.w3.weight": "model-00004-of-00004.safetensors",
435
+ "model.layers.20.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors",
436
+ "model.layers.20.input_layernorm.weight": "model-00004-of-00004.safetensors",
437
+ "model.layers.20.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
438
+ "model.layers.20.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
439
+ "model.layers.20.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
440
+ "model.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
441
+ "model.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
442
+ "model.layers.21.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors",
443
+ "model.layers.21.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00004.safetensors",
444
+ "model.layers.21.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00004.safetensors",
445
+ "model.layers.21.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors",
446
+ "model.layers.21.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00004.safetensors",
447
+ "model.layers.21.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00004.safetensors",
448
+ "model.layers.21.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors",
449
+ "model.layers.21.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00004.safetensors",
450
+ "model.layers.21.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00004.safetensors",
451
+ "model.layers.21.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00004.safetensors",
452
+ "model.layers.21.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00004.safetensors",
453
+ "model.layers.21.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00004.safetensors",
454
+ "model.layers.21.block_sparse_moe.experts.4.w1.weight": "model-00004-of-00004.safetensors",
455
+ "model.layers.21.block_sparse_moe.experts.4.w2.weight": "model-00004-of-00004.safetensors",
456
+ "model.layers.21.block_sparse_moe.experts.4.w3.weight": "model-00004-of-00004.safetensors",
457
+ "model.layers.21.block_sparse_moe.experts.5.w1.weight": "model-00004-of-00004.safetensors",
458
+ "model.layers.21.block_sparse_moe.experts.5.w2.weight": "model-00004-of-00004.safetensors",
459
+ "model.layers.21.block_sparse_moe.experts.5.w3.weight": "model-00004-of-00004.safetensors",
460
+ "model.layers.21.block_sparse_moe.experts.6.w1.weight": "model-00004-of-00004.safetensors",
461
+ "model.layers.21.block_sparse_moe.experts.6.w2.weight": "model-00004-of-00004.safetensors",
462
+ "model.layers.21.block_sparse_moe.experts.6.w3.weight": "model-00004-of-00004.safetensors",
463
+ "model.layers.21.block_sparse_moe.experts.7.w1.weight": "model-00004-of-00004.safetensors",
464
+ "model.layers.21.block_sparse_moe.experts.7.w2.weight": "model-00004-of-00004.safetensors",
465
+ "model.layers.21.block_sparse_moe.experts.7.w3.weight": "model-00004-of-00004.safetensors",
466
+ "model.layers.21.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors",
467
+ "model.layers.21.input_layernorm.weight": "model-00004-of-00004.safetensors",
468
+ "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
469
+ "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
470
+ "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
471
+ "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
472
+ "model.layers.21.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
473
+ "model.layers.22.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors",
474
+ "model.layers.22.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00004.safetensors",
475
+ "model.layers.22.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00004.safetensors",
476
+ "model.layers.22.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors",
477
+ "model.layers.22.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00004.safetensors",
478
+ "model.layers.22.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00004.safetensors",
479
+ "model.layers.22.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors",
480
+ "model.layers.22.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00004.safetensors",
481
+ "model.layers.22.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00004.safetensors",
482
+ "model.layers.22.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00004.safetensors",
483
+ "model.layers.22.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00004.safetensors",
484
+ "model.layers.22.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00004.safetensors",
485
+ "model.layers.22.block_sparse_moe.experts.4.w1.weight": "model-00004-of-00004.safetensors",
486
+ "model.layers.22.block_sparse_moe.experts.4.w2.weight": "model-00004-of-00004.safetensors",
487
+ "model.layers.22.block_sparse_moe.experts.4.w3.weight": "model-00004-of-00004.safetensors",
488
+ "model.layers.22.block_sparse_moe.experts.5.w1.weight": "model-00004-of-00004.safetensors",
489
+ "model.layers.22.block_sparse_moe.experts.5.w2.weight": "model-00004-of-00004.safetensors",
490
+ "model.layers.22.block_sparse_moe.experts.5.w3.weight": "model-00004-of-00004.safetensors",
491
+ "model.layers.22.block_sparse_moe.experts.6.w1.weight": "model-00004-of-00004.safetensors",
492
+ "model.layers.22.block_sparse_moe.experts.6.w2.weight": "model-00004-of-00004.safetensors",
493
+ "model.layers.22.block_sparse_moe.experts.6.w3.weight": "model-00004-of-00004.safetensors",
494
+ "model.layers.22.block_sparse_moe.experts.7.w1.weight": "model-00004-of-00004.safetensors",
495
+ "model.layers.22.block_sparse_moe.experts.7.w2.weight": "model-00004-of-00004.safetensors",
496
+ "model.layers.22.block_sparse_moe.experts.7.w3.weight": "model-00004-of-00004.safetensors",
497
+ "model.layers.22.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors",
498
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00004.safetensors",
499
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
500
+ "model.layers.22.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
501
+ "model.layers.22.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
502
+ "model.layers.22.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
503
+ "model.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
504
+ "model.layers.23.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors",
505
+ "model.layers.23.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00004.safetensors",
506
+ "model.layers.23.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00004.safetensors",
507
+ "model.layers.23.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors",
508
+ "model.layers.23.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00004.safetensors",
509
+ "model.layers.23.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00004.safetensors",
510
+ "model.layers.23.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors",
511
+ "model.layers.23.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00004.safetensors",
512
+ "model.layers.23.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00004.safetensors",
513
+ "model.layers.23.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00004.safetensors",
514
+ "model.layers.23.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00004.safetensors",
515
+ "model.layers.23.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00004.safetensors",
516
+ "model.layers.23.block_sparse_moe.experts.4.w1.weight": "model-00004-of-00004.safetensors",
517
+ "model.layers.23.block_sparse_moe.experts.4.w2.weight": "model-00004-of-00004.safetensors",
518
+ "model.layers.23.block_sparse_moe.experts.4.w3.weight": "model-00004-of-00004.safetensors",
519
+ "model.layers.23.block_sparse_moe.experts.5.w1.weight": "model-00004-of-00004.safetensors",
520
+ "model.layers.23.block_sparse_moe.experts.5.w2.weight": "model-00004-of-00004.safetensors",
521
+ "model.layers.23.block_sparse_moe.experts.5.w3.weight": "model-00004-of-00004.safetensors",
522
+ "model.layers.23.block_sparse_moe.experts.6.w1.weight": "model-00004-of-00004.safetensors",
523
+ "model.layers.23.block_sparse_moe.experts.6.w2.weight": "model-00004-of-00004.safetensors",
524
+ "model.layers.23.block_sparse_moe.experts.6.w3.weight": "model-00004-of-00004.safetensors",
525
+ "model.layers.23.block_sparse_moe.experts.7.w1.weight": "model-00004-of-00004.safetensors",
526
+ "model.layers.23.block_sparse_moe.experts.7.w2.weight": "model-00004-of-00004.safetensors",
527
+ "model.layers.23.block_sparse_moe.experts.7.w3.weight": "model-00004-of-00004.safetensors",
528
+ "model.layers.23.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors",
529
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00004.safetensors",
530
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
531
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
532
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
533
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
534
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
535
+ "model.layers.3.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
536
+ "model.layers.3.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
537
+ "model.layers.3.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
538
+ "model.layers.3.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
539
+ "model.layers.3.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
540
+ "model.layers.3.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
541
+ "model.layers.3.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
542
+ "model.layers.3.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
543
+ "model.layers.3.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
544
+ "model.layers.3.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
545
+ "model.layers.3.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
546
+ "model.layers.3.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
547
+ "model.layers.3.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
548
+ "model.layers.3.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
549
+ "model.layers.3.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
550
+ "model.layers.3.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
551
+ "model.layers.3.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
552
+ "model.layers.3.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
553
+ "model.layers.3.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
554
+ "model.layers.3.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
555
+ "model.layers.3.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
556
+ "model.layers.3.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00004.safetensors",
557
+ "model.layers.3.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00004.safetensors",
558
+ "model.layers.3.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00004.safetensors",
559
+ "model.layers.3.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
560
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
561
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
562
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
563
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
564
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
565
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
566
+ "model.layers.4.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
567
+ "model.layers.4.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
568
+ "model.layers.4.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
569
+ "model.layers.4.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
570
+ "model.layers.4.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
571
+ "model.layers.4.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
572
+ "model.layers.4.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
573
+ "model.layers.4.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
574
+ "model.layers.4.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
575
+ "model.layers.4.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
576
+ "model.layers.4.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
577
+ "model.layers.4.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
578
+ "model.layers.4.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
579
+ "model.layers.4.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
580
+ "model.layers.4.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
581
+ "model.layers.4.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
582
+ "model.layers.4.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
583
+ "model.layers.4.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
584
+ "model.layers.4.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
585
+ "model.layers.4.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
586
+ "model.layers.4.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
587
+ "model.layers.4.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00004.safetensors",
588
+ "model.layers.4.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00004.safetensors",
589
+ "model.layers.4.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00004.safetensors",
590
+ "model.layers.4.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
591
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
592
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
593
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
594
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
595
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
596
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
597
+ "model.layers.5.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
598
+ "model.layers.5.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
599
+ "model.layers.5.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
600
+ "model.layers.5.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
601
+ "model.layers.5.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
602
+ "model.layers.5.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
603
+ "model.layers.5.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
604
+ "model.layers.5.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
605
+ "model.layers.5.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
606
+ "model.layers.5.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
607
+ "model.layers.5.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
608
+ "model.layers.5.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
609
+ "model.layers.5.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
610
+ "model.layers.5.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
611
+ "model.layers.5.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
612
+ "model.layers.5.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
613
+ "model.layers.5.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
614
+ "model.layers.5.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
615
+ "model.layers.5.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
616
+ "model.layers.5.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
617
+ "model.layers.5.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
618
+ "model.layers.5.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00004.safetensors",
619
+ "model.layers.5.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00004.safetensors",
620
+ "model.layers.5.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00004.safetensors",
621
+ "model.layers.5.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
622
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
623
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
624
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
625
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
626
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
627
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
628
+ "model.layers.6.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
629
+ "model.layers.6.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
630
+ "model.layers.6.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
631
+ "model.layers.6.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
632
+ "model.layers.6.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
633
+ "model.layers.6.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
634
+ "model.layers.6.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
635
+ "model.layers.6.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
636
+ "model.layers.6.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
637
+ "model.layers.6.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
638
+ "model.layers.6.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
639
+ "model.layers.6.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
640
+ "model.layers.6.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
641
+ "model.layers.6.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
642
+ "model.layers.6.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
643
+ "model.layers.6.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
644
+ "model.layers.6.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
645
+ "model.layers.6.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
646
+ "model.layers.6.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
647
+ "model.layers.6.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
648
+ "model.layers.6.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
649
+ "model.layers.6.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00004.safetensors",
650
+ "model.layers.6.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00004.safetensors",
651
+ "model.layers.6.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00004.safetensors",
652
+ "model.layers.6.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
653
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
654
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
655
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
656
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
657
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
658
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
659
+ "model.layers.7.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
660
+ "model.layers.7.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
661
+ "model.layers.7.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
662
+ "model.layers.7.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
663
+ "model.layers.7.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
664
+ "model.layers.7.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
665
+ "model.layers.7.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
666
+ "model.layers.7.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
667
+ "model.layers.7.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
668
+ "model.layers.7.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
669
+ "model.layers.7.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
670
+ "model.layers.7.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
671
+ "model.layers.7.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
672
+ "model.layers.7.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
673
+ "model.layers.7.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
674
+ "model.layers.7.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
675
+ "model.layers.7.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
676
+ "model.layers.7.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
677
+ "model.layers.7.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
678
+ "model.layers.7.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
679
+ "model.layers.7.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
680
+ "model.layers.7.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00004.safetensors",
681
+ "model.layers.7.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00004.safetensors",
682
+ "model.layers.7.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00004.safetensors",
683
+ "model.layers.7.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
684
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
685
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
686
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
687
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
688
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
689
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
690
+ "model.layers.8.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
691
+ "model.layers.8.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
692
+ "model.layers.8.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
693
+ "model.layers.8.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
694
+ "model.layers.8.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
695
+ "model.layers.8.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
696
+ "model.layers.8.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
697
+ "model.layers.8.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
698
+ "model.layers.8.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
699
+ "model.layers.8.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
700
+ "model.layers.8.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
701
+ "model.layers.8.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
702
+ "model.layers.8.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
703
+ "model.layers.8.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
704
+ "model.layers.8.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
705
+ "model.layers.8.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
706
+ "model.layers.8.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
707
+ "model.layers.8.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
708
+ "model.layers.8.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
709
+ "model.layers.8.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
710
+ "model.layers.8.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
711
+ "model.layers.8.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00004.safetensors",
712
+ "model.layers.8.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00004.safetensors",
713
+ "model.layers.8.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00004.safetensors",
714
+ "model.layers.8.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
715
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
716
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
717
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
718
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
719
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
720
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
721
+ "model.layers.9.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
722
+ "model.layers.9.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
723
+ "model.layers.9.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
724
+ "model.layers.9.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
725
+ "model.layers.9.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
726
+ "model.layers.9.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
727
+ "model.layers.9.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
728
+ "model.layers.9.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
729
+ "model.layers.9.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
730
+ "model.layers.9.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
731
+ "model.layers.9.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
732
+ "model.layers.9.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
733
+ "model.layers.9.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
734
+ "model.layers.9.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
735
+ "model.layers.9.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
736
+ "model.layers.9.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
737
+ "model.layers.9.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
738
+ "model.layers.9.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
739
+ "model.layers.9.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
740
+ "model.layers.9.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
741
+ "model.layers.9.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
742
+ "model.layers.9.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00004.safetensors",
743
+ "model.layers.9.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00004.safetensors",
744
+ "model.layers.9.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00004.safetensors",
745
+ "model.layers.9.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
746
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
747
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
748
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
749
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
750
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
751
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
752
+ "model.norm.weight": "model-00004-of-00004.safetensors"
753
+ }
754
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5cf3bac380addaa516f941e6a276bb95c92ecfb3c08371ff9fba4b2faac6df0
3
+ size 15024
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:219db464e75bbf2b6c41a71470b6182f4de4159f65fd71e3323fd50c658eea3a
3
+ size 15024
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03b8316374c36bf601b0d74a53807a0d460d535e42771ed5f0f6db088f66ab63
3
+ size 15024
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d6c7bdfadb70cba54ce8abee8b9fbcd1d5870419c1ccbd2e7362a47c09ba74e
3
+ size 15024
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<CLS|LLM-jp>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<MASK|LLM-jp>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<PAD|LLM-jp>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "<SEP|LLM-jp>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<MASK|LLM-jp>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<PAD|LLM-jp>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "5": {
46
+ "content": "<CLS|LLM-jp>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "6": {
54
+ "content": "<SEP|LLM-jp>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "7": {
62
+ "content": "<EOD|LLM-jp>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ }
69
+ },
70
+ "bos_token": "<s>",
71
+ "clean_up_tokenization_spaces": false,
72
+ "cls_token": "<CLS|LLM-jp>",
73
+ "eod_token": "</s>",
74
+ "eos_token": "</s>",
75
+ "extra_ids": 0,
76
+ "mask_token": "<MASK|LLM-jp>",
77
+ "model_max_length": 1000000000000000019884624838656,
78
+ "pad_token": "<PAD|LLM-jp>",
79
+ "sep_token": "<SEP|LLM-jp>",
80
+ "sp_model_kwargs": {},
81
+ "tokenizer_class": "PreTrainedTokenizerFast",
82
+ "unk_token": "<unk>"
83
+ }
trainer_state.json ADDED
@@ -0,0 +1,758 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.2237541824579239,
3
+ "best_model_checkpoint": "../../models/moe/moe/onlyRouterTrue_aveSVLossFalse_lr5e-03_ralc0.00/checkpoint-13692",
4
+ "epoch": 1.0,
5
+ "eval_steps": 3423,
6
+ "global_step": 13692,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.010005842827928718,
13
+ "grad_norm": 3.4739856719970703,
14
+ "learning_rate": 4.9987649590704944e-05,
15
+ "loss": 0.6176,
16
+ "step": 137
17
+ },
18
+ {
19
+ "epoch": 0.020011685655857436,
20
+ "grad_norm": 2.701633930206299,
21
+ "learning_rate": 4.9950610565428546e-05,
22
+ "loss": 0.5809,
23
+ "step": 274
24
+ },
25
+ {
26
+ "epoch": 0.03001752848378615,
27
+ "grad_norm": 2.7198803424835205,
28
+ "learning_rate": 4.988891951994058e-05,
29
+ "loss": 0.572,
30
+ "step": 411
31
+ },
32
+ {
33
+ "epoch": 0.04002337131171487,
34
+ "grad_norm": 2.594041109085083,
35
+ "learning_rate": 4.9802637407013966e-05,
36
+ "loss": 0.5511,
37
+ "step": 548
38
+ },
39
+ {
40
+ "epoch": 0.05002921413964359,
41
+ "grad_norm": 2.6721420288085938,
42
+ "learning_rate": 4.969184947620146e-05,
43
+ "loss": 0.5502,
44
+ "step": 685
45
+ },
46
+ {
47
+ "epoch": 0.0600350569675723,
48
+ "grad_norm": 2.6376290321350098,
49
+ "learning_rate": 4.9556665189606316e-05,
50
+ "loss": 0.5266,
51
+ "step": 822
52
+ },
53
+ {
54
+ "epoch": 0.07004089979550102,
55
+ "grad_norm": 2.9528913497924805,
56
+ "learning_rate": 4.93972181137301e-05,
57
+ "loss": 0.536,
58
+ "step": 959
59
+ },
60
+ {
61
+ "epoch": 0.08004674262342974,
62
+ "grad_norm": 2.715660810470581,
63
+ "learning_rate": 4.9213665787504655e-05,
64
+ "loss": 0.5056,
65
+ "step": 1096
66
+ },
67
+ {
68
+ "epoch": 0.09005258545135846,
69
+ "grad_norm": 3.309116840362549,
70
+ "learning_rate": 4.900618956663845e-05,
71
+ "loss": 0.5124,
72
+ "step": 1233
73
+ },
74
+ {
75
+ "epoch": 0.10005842827928718,
76
+ "grad_norm": 2.226123332977295,
77
+ "learning_rate": 4.877499444443122e-05,
78
+ "loss": 0.5199,
79
+ "step": 1370
80
+ },
81
+ {
82
+ "epoch": 0.1100642711072159,
83
+ "grad_norm": 3.922006130218506,
84
+ "learning_rate": 4.852030884923388e-05,
85
+ "loss": 0.4957,
86
+ "step": 1507
87
+ },
88
+ {
89
+ "epoch": 0.1200701139351446,
90
+ "grad_norm": 3.2229082584381104,
91
+ "learning_rate": 4.82423844187538e-05,
92
+ "loss": 0.4864,
93
+ "step": 1644
94
+ },
95
+ {
96
+ "epoch": 0.13007595676307332,
97
+ "grad_norm": 1.936515212059021,
98
+ "learning_rate": 4.7941495751428536e-05,
99
+ "loss": 0.4653,
100
+ "step": 1781
101
+ },
102
+ {
103
+ "epoch": 0.14008179959100203,
104
+ "grad_norm": 2.966193199157715,
105
+ "learning_rate": 4.7617940135113606e-05,
106
+ "loss": 0.4722,
107
+ "step": 1918
108
+ },
109
+ {
110
+ "epoch": 0.15008764241893077,
111
+ "grad_norm": 3.2486863136291504,
112
+ "learning_rate": 4.7272037253352276e-05,
113
+ "loss": 0.4477,
114
+ "step": 2055
115
+ },
116
+ {
117
+ "epoch": 0.16009348524685948,
118
+ "grad_norm": 2.4895386695861816,
119
+ "learning_rate": 4.690412886951786e-05,
120
+ "loss": 0.4657,
121
+ "step": 2192
122
+ },
123
+ {
124
+ "epoch": 0.1700993280747882,
125
+ "grad_norm": 2.049923896789551,
126
+ "learning_rate": 4.651457848914021e-05,
127
+ "loss": 0.4538,
128
+ "step": 2329
129
+ },
130
+ {
131
+ "epoch": 0.1801051709027169,
132
+ "grad_norm": 2.0172815322875977,
133
+ "learning_rate": 4.610377100075045e-05,
134
+ "loss": 0.4317,
135
+ "step": 2466
136
+ },
137
+ {
138
+ "epoch": 0.19011101373064562,
139
+ "grad_norm": 2.2022132873535156,
140
+ "learning_rate": 4.5672112295598404e-05,
141
+ "loss": 0.4336,
142
+ "step": 2603
143
+ },
144
+ {
145
+ "epoch": 0.20011685655857436,
146
+ "grad_norm": 4.102416038513184,
147
+ "learning_rate": 4.5220028866618837e-05,
148
+ "loss": 0.4226,
149
+ "step": 2740
150
+ },
151
+ {
152
+ "epoch": 0.21012269938650308,
153
+ "grad_norm": 2.130418539047241,
154
+ "learning_rate": 4.4747967387042424e-05,
155
+ "loss": 0.4242,
156
+ "step": 2877
157
+ },
158
+ {
159
+ "epoch": 0.2201285422144318,
160
+ "grad_norm": 2.399773120880127,
161
+ "learning_rate": 4.4256394269067967e-05,
162
+ "loss": 0.4097,
163
+ "step": 3014
164
+ },
165
+ {
166
+ "epoch": 0.2301343850423605,
167
+ "grad_norm": 1.86017644405365,
168
+ "learning_rate": 4.3745795203031904e-05,
169
+ "loss": 0.4034,
170
+ "step": 3151
171
+ },
172
+ {
173
+ "epoch": 0.2401402278702892,
174
+ "grad_norm": 1.667731761932373,
175
+ "learning_rate": 4.321667467753034e-05,
176
+ "loss": 0.4108,
177
+ "step": 3288
178
+ },
179
+ {
180
+ "epoch": 0.25,
181
+ "eval_loss": 0.48173779249191284,
182
+ "eval_runtime": 367.5367,
183
+ "eval_samples_per_second": 31.393,
184
+ "eval_steps_per_second": 7.85,
185
+ "step": 3423
186
+ },
187
+ {
188
+ "epoch": 0.2501460706982179,
189
+ "grad_norm": 5.194522857666016,
190
+ "learning_rate": 4.2669555480967783e-05,
191
+ "loss": 0.3973,
192
+ "step": 3425
193
+ },
194
+ {
195
+ "epoch": 0.26015191352614664,
196
+ "grad_norm": 2.7280290126800537,
197
+ "learning_rate": 4.210497818502509e-05,
198
+ "loss": 0.409,
199
+ "step": 3562
200
+ },
201
+ {
202
+ "epoch": 0.27015775635407535,
203
+ "grad_norm": 2.3584136962890625,
204
+ "learning_rate": 4.152350061055695e-05,
205
+ "loss": 0.3855,
206
+ "step": 3699
207
+ },
208
+ {
209
+ "epoch": 0.28016359918200406,
210
+ "grad_norm": 3.4275765419006348,
211
+ "learning_rate": 4.092569727644661e-05,
212
+ "loss": 0.4029,
213
+ "step": 3836
214
+ },
215
+ {
216
+ "epoch": 0.29016944200993283,
217
+ "grad_norm": 2.14209246635437,
218
+ "learning_rate": 4.031215883196239e-05,
219
+ "loss": 0.3836,
220
+ "step": 3973
221
+ },
222
+ {
223
+ "epoch": 0.30017528483786154,
224
+ "grad_norm": 2.825669288635254,
225
+ "learning_rate": 3.968349147317693e-05,
226
+ "loss": 0.3842,
227
+ "step": 4110
228
+ },
229
+ {
230
+ "epoch": 0.31018112766579026,
231
+ "grad_norm": 2.3074870109558105,
232
+ "learning_rate": 3.904031634402552e-05,
233
+ "loss": 0.3601,
234
+ "step": 4247
235
+ },
236
+ {
237
+ "epoch": 0.32018697049371897,
238
+ "grad_norm": 2.8916587829589844,
239
+ "learning_rate": 3.838326892259564e-05,
240
+ "loss": 0.38,
241
+ "step": 4384
242
+ },
243
+ {
244
+ "epoch": 0.3301928133216477,
245
+ "grad_norm": 1.9778506755828857,
246
+ "learning_rate": 3.7712998393253786e-05,
247
+ "loss": 0.3611,
248
+ "step": 4521
249
+ },
250
+ {
251
+ "epoch": 0.3401986561495764,
252
+ "grad_norm": 2.735363721847534,
253
+ "learning_rate": 3.703016700522999e-05,
254
+ "loss": 0.3653,
255
+ "step": 4658
256
+ },
257
+ {
258
+ "epoch": 0.3502044989775051,
259
+ "grad_norm": 3.4953627586364746,
260
+ "learning_rate": 3.6335449418293985e-05,
261
+ "loss": 0.3754,
262
+ "step": 4795
263
+ },
264
+ {
265
+ "epoch": 0.3602103418054338,
266
+ "grad_norm": 4.839205265045166,
267
+ "learning_rate": 3.562953203616925e-05,
268
+ "loss": 0.3468,
269
+ "step": 4932
270
+ },
271
+ {
272
+ "epoch": 0.37021618463336253,
273
+ "grad_norm": 2.1916751861572266,
274
+ "learning_rate": 3.491311232834357e-05,
275
+ "loss": 0.3524,
276
+ "step": 5069
277
+ },
278
+ {
279
+ "epoch": 0.38022202746129125,
280
+ "grad_norm": 3.1856038570404053,
281
+ "learning_rate": 3.418689814094646e-05,
282
+ "loss": 0.3501,
283
+ "step": 5206
284
+ },
285
+ {
286
+ "epoch": 0.39022787028921996,
287
+ "grad_norm": 1.9597059488296509,
288
+ "learning_rate": 3.345160699737394e-05,
289
+ "loss": 0.3474,
290
+ "step": 5343
291
+ },
292
+ {
293
+ "epoch": 0.4002337131171487,
294
+ "grad_norm": 2.523240566253662,
295
+ "learning_rate": 3.2707965389351925e-05,
296
+ "loss": 0.3355,
297
+ "step": 5480
298
+ },
299
+ {
300
+ "epoch": 0.41023955594507744,
301
+ "grad_norm": 16.007722854614258,
302
+ "learning_rate": 3.195670805913866e-05,
303
+ "loss": 0.3285,
304
+ "step": 5617
305
+ },
306
+ {
307
+ "epoch": 0.42024539877300615,
308
+ "grad_norm": 4.493948936462402,
309
+ "learning_rate": 3.119857727357527e-05,
310
+ "loss": 0.3232,
311
+ "step": 5754
312
+ },
313
+ {
314
+ "epoch": 0.43025124160093486,
315
+ "grad_norm": 3.0784451961517334,
316
+ "learning_rate": 3.0434322090701827e-05,
317
+ "loss": 0.3264,
318
+ "step": 5891
319
+ },
320
+ {
321
+ "epoch": 0.4402570844288636,
322
+ "grad_norm": 2.9652538299560547,
323
+ "learning_rate": 2.9664697619663472e-05,
324
+ "loss": 0.3147,
325
+ "step": 6028
326
+ },
327
+ {
328
+ "epoch": 0.4502629272567923,
329
+ "grad_norm": 2.1190903186798096,
330
+ "learning_rate": 2.8890464274637876e-05,
331
+ "loss": 0.3096,
332
+ "step": 6165
333
+ },
334
+ {
335
+ "epoch": 0.460268770084721,
336
+ "grad_norm": 7.0982985496521,
337
+ "learning_rate": 2.8112387023521115e-05,
338
+ "loss": 0.2968,
339
+ "step": 6302
340
+ },
341
+ {
342
+ "epoch": 0.4702746129126497,
343
+ "grad_norm": 1.3744592666625977,
344
+ "learning_rate": 2.733123463211434e-05,
345
+ "loss": 0.3036,
346
+ "step": 6439
347
+ },
348
+ {
349
+ "epoch": 0.4802804557405784,
350
+ "grad_norm": 1.526167631149292,
351
+ "learning_rate": 2.6547778904558018e-05,
352
+ "loss": 0.3069,
353
+ "step": 6576
354
+ },
355
+ {
356
+ "epoch": 0.49028629856850714,
357
+ "grad_norm": 1.452222466468811,
358
+ "learning_rate": 2.5762793920764124e-05,
359
+ "loss": 0.2992,
360
+ "step": 6713
361
+ },
362
+ {
363
+ "epoch": 0.5,
364
+ "eval_loss": 0.3556436002254486,
365
+ "eval_runtime": 367.6162,
366
+ "eval_samples_per_second": 31.386,
367
+ "eval_steps_per_second": 7.848,
368
+ "step": 6846
369
+ },
370
+ {
371
+ "epoch": 0.5002921413964359,
372
+ "grad_norm": 2.3508574962615967,
373
+ "learning_rate": 2.4977055271599893e-05,
374
+ "loss": 0.2923,
375
+ "step": 6850
376
+ },
377
+ {
378
+ "epoch": 0.5102979842243646,
379
+ "grad_norm": 2.161405324935913,
380
+ "learning_rate": 2.4191339292578617e-05,
381
+ "loss": 0.2866,
382
+ "step": 6987
383
+ },
384
+ {
385
+ "epoch": 0.5203038270522933,
386
+ "grad_norm": 1.180467963218689,
387
+ "learning_rate": 2.340642229681474e-05,
388
+ "loss": 0.2874,
389
+ "step": 7124
390
+ },
391
+ {
392
+ "epoch": 0.530309669880222,
393
+ "grad_norm": 2.1960806846618652,
394
+ "learning_rate": 2.262307980800109e-05,
395
+ "loss": 0.2649,
396
+ "step": 7261
397
+ },
398
+ {
399
+ "epoch": 0.5403155127081507,
400
+ "grad_norm": 1.662766933441162,
401
+ "learning_rate": 2.1842085794166068e-05,
402
+ "loss": 0.268,
403
+ "step": 7398
404
+ },
405
+ {
406
+ "epoch": 0.5503213555360794,
407
+ "grad_norm": 1.6623494625091553,
408
+ "learning_rate": 2.1064211902967904e-05,
409
+ "loss": 0.2538,
410
+ "step": 7535
411
+ },
412
+ {
413
+ "epoch": 0.5603271983640081,
414
+ "grad_norm": 1.6007744073867798,
415
+ "learning_rate": 2.02902266992815e-05,
416
+ "loss": 0.2654,
417
+ "step": 7672
418
+ },
419
+ {
420
+ "epoch": 0.570333041191937,
421
+ "grad_norm": 2.0483551025390625,
422
+ "learning_rate": 1.9520894905831154e-05,
423
+ "loss": 0.2567,
424
+ "step": 7809
425
+ },
426
+ {
427
+ "epoch": 0.5803388840198657,
428
+ "grad_norm": 1.1370702981948853,
429
+ "learning_rate": 1.8756976647619502e-05,
430
+ "loss": 0.2558,
431
+ "step": 7946
432
+ },
433
+ {
434
+ "epoch": 0.5903447268477944,
435
+ "grad_norm": 1.3925893306732178,
436
+ "learning_rate": 1.7999226700899093e-05,
437
+ "loss": 0.239,
438
+ "step": 8083
439
+ },
440
+ {
441
+ "epoch": 0.6003505696757231,
442
+ "grad_norm": 1.1552609205245972,
443
+ "learning_rate": 1.7248393747428747e-05,
444
+ "loss": 0.2389,
445
+ "step": 8220
446
+ },
447
+ {
448
+ "epoch": 0.6103564125036518,
449
+ "grad_norm": 1.9827595949172974,
450
+ "learning_rate": 1.6505219634751472e-05,
451
+ "loss": 0.2439,
452
+ "step": 8357
453
+ },
454
+ {
455
+ "epoch": 0.6203622553315805,
456
+ "grad_norm": 1.7899774312973022,
457
+ "learning_rate": 1.5770438643224794e-05,
458
+ "loss": 0.2471,
459
+ "step": 8494
460
+ },
461
+ {
462
+ "epoch": 0.6303680981595092,
463
+ "grad_norm": 1.239159345626831,
464
+ "learning_rate": 1.5044776760527727e-05,
465
+ "loss": 0.2329,
466
+ "step": 8631
467
+ },
468
+ {
469
+ "epoch": 0.6403739409874379,
470
+ "grad_norm": 1.22818922996521,
471
+ "learning_rate": 1.4328950964361143e-05,
472
+ "loss": 0.2316,
473
+ "step": 8768
474
+ },
475
+ {
476
+ "epoch": 0.6503797838153667,
477
+ "grad_norm": 1.210986614227295,
478
+ "learning_rate": 1.3623668514050391e-05,
479
+ "loss": 0.2221,
480
+ "step": 8905
481
+ },
482
+ {
483
+ "epoch": 0.6603856266432954,
484
+ "grad_norm": 3.446089506149292,
485
+ "learning_rate": 1.2929626251749854e-05,
486
+ "loss": 0.2269,
487
+ "step": 9042
488
+ },
489
+ {
490
+ "epoch": 0.6703914694712241,
491
+ "grad_norm": 2.4413158893585205,
492
+ "learning_rate": 1.2247509913940128e-05,
493
+ "loss": 0.2209,
494
+ "step": 9179
495
+ },
496
+ {
497
+ "epoch": 0.6803973122991528,
498
+ "grad_norm": 1.9606636762619019,
499
+ "learning_rate": 1.1577993453897933e-05,
500
+ "loss": 0.221,
501
+ "step": 9316
502
+ },
503
+ {
504
+ "epoch": 0.6904031551270815,
505
+ "grad_norm": 0.8826603293418884,
506
+ "learning_rate": 1.0921738375808166e-05,
507
+ "loss": 0.2041,
508
+ "step": 9453
509
+ },
510
+ {
511
+ "epoch": 0.7004089979550102,
512
+ "grad_norm": 1.2856823205947876,
513
+ "learning_rate": 1.0279393081176122e-05,
514
+ "loss": 0.2022,
515
+ "step": 9590
516
+ },
517
+ {
518
+ "epoch": 0.7104148407829389,
519
+ "grad_norm": 0.5094468593597412,
520
+ "learning_rate": 9.651592228185622e-06,
521
+ "loss": 0.2023,
522
+ "step": 9727
523
+ },
524
+ {
525
+ "epoch": 0.7204206836108676,
526
+ "grad_norm": 1.4797954559326172,
527
+ "learning_rate": 9.038956104635871e-06,
528
+ "loss": 0.1961,
529
+ "step": 9864
530
+ },
531
+ {
532
+ "epoch": 0.7304265264387964,
533
+ "grad_norm": 1.850120186805725,
534
+ "learning_rate": 8.442090015076842e-06,
535
+ "loss": 0.2063,
536
+ "step": 10001
537
+ },
538
+ {
539
+ "epoch": 0.7404323692667251,
540
+ "grad_norm": 1.438025712966919,
541
+ "learning_rate": 7.861583682748586e-06,
542
+ "loss": 0.1903,
543
+ "step": 10138
544
+ },
545
+ {
546
+ "epoch": 0.75,
547
+ "eval_loss": 0.254038542509079,
548
+ "eval_runtime": 367.4989,
549
+ "eval_samples_per_second": 31.396,
550
+ "eval_steps_per_second": 7.85,
551
+ "step": 10269
552
+ },
553
+ {
554
+ "epoch": 0.7504382120946538,
555
+ "grad_norm": 1.2179102897644043,
556
+ "learning_rate": 7.298010666915303e-06,
557
+ "loss": 0.1885,
558
+ "step": 10275
559
+ },
560
+ {
561
+ "epoch": 0.7604440549225825,
562
+ "grad_norm": 1.099284291267395,
563
+ "learning_rate": 6.751927796170044e-06,
564
+ "loss": 0.2005,
565
+ "step": 10412
566
+ },
567
+ {
568
+ "epoch": 0.7704498977505112,
569
+ "grad_norm": 1.2008761167526245,
570
+ "learning_rate": 6.2238746182698375e-06,
571
+ "loss": 0.1702,
572
+ "step": 10549
573
+ },
574
+ {
575
+ "epoch": 0.7804557405784399,
576
+ "grad_norm": 1.5368109941482544,
577
+ "learning_rate": 5.7143728670448095e-06,
578
+ "loss": 0.1947,
579
+ "step": 10686
580
+ },
581
+ {
582
+ "epoch": 0.7904615834063686,
583
+ "grad_norm": 1.0241951942443848,
584
+ "learning_rate": 5.223925946908093e-06,
585
+ "loss": 0.1809,
586
+ "step": 10823
587
+ },
588
+ {
589
+ "epoch": 0.8004674262342975,
590
+ "grad_norm": 1.369369387626648,
591
+ "learning_rate": 4.7530184354757675e-06,
592
+ "loss": 0.1889,
593
+ "step": 10960
594
+ },
595
+ {
596
+ "epoch": 0.8104732690622262,
597
+ "grad_norm": 0.7070077061653137,
598
+ "learning_rate": 4.30211560478837e-06,
599
+ "loss": 0.1796,
600
+ "step": 11097
601
+ },
602
+ {
603
+ "epoch": 0.8204791118901549,
604
+ "grad_norm": 1.7389978170394897,
605
+ "learning_rate": 3.871662961606784e-06,
606
+ "loss": 0.1843,
607
+ "step": 11234
608
+ },
609
+ {
610
+ "epoch": 0.8304849547180836,
611
+ "grad_norm": 0.9540761709213257,
612
+ "learning_rate": 3.4620858072370504e-06,
613
+ "loss": 0.1764,
614
+ "step": 11371
615
+ },
616
+ {
617
+ "epoch": 0.8404907975460123,
618
+ "grad_norm": 1.6178034543991089,
619
+ "learning_rate": 3.073788817318707e-06,
620
+ "loss": 0.1785,
621
+ "step": 11508
622
+ },
623
+ {
624
+ "epoch": 0.850496640373941,
625
+ "grad_norm": 1.0763949155807495,
626
+ "learning_rate": 2.7071556419920514e-06,
627
+ "loss": 0.1715,
628
+ "step": 11645
629
+ },
630
+ {
631
+ "epoch": 0.8605024832018697,
632
+ "grad_norm": 1.0416216850280762,
633
+ "learning_rate": 2.3625485268391893e-06,
634
+ "loss": 0.1609,
635
+ "step": 11782
636
+ },
637
+ {
638
+ "epoch": 0.8705083260297984,
639
+ "grad_norm": 1.1292046308517456,
640
+ "learning_rate": 2.040307954973572e-06,
641
+ "loss": 0.1739,
642
+ "step": 11919
643
+ },
644
+ {
645
+ "epoch": 0.8805141688577272,
646
+ "grad_norm": 1.6674988269805908,
647
+ "learning_rate": 1.7407523106315244e-06,
648
+ "loss": 0.155,
649
+ "step": 12056
650
+ },
651
+ {
652
+ "epoch": 0.8905200116856559,
653
+ "grad_norm": 0.8487703800201416,
654
+ "learning_rate": 1.4641775645981849e-06,
655
+ "loss": 0.1687,
656
+ "step": 12193
657
+ },
658
+ {
659
+ "epoch": 0.9005258545135846,
660
+ "grad_norm": 0.9765934944152832,
661
+ "learning_rate": 1.210856981778688e-06,
662
+ "loss": 0.1561,
663
+ "step": 12330
664
+ },
665
+ {
666
+ "epoch": 0.9105316973415133,
667
+ "grad_norm": 0.9121004343032837,
668
+ "learning_rate": 9.810408512034908e-07,
669
+ "loss": 0.1621,
670
+ "step": 12467
671
+ },
672
+ {
673
+ "epoch": 0.920537540169442,
674
+ "grad_norm": 1.1236246824264526,
675
+ "learning_rate": 7.749562387346088e-07,
676
+ "loss": 0.1749,
677
+ "step": 12604
678
+ },
679
+ {
680
+ "epoch": 0.9305433829973707,
681
+ "grad_norm": 1.0239607095718384,
682
+ "learning_rate": 5.928067627171158e-07,
683
+ "loss": 0.165,
684
+ "step": 12741
685
+ },
686
+ {
687
+ "epoch": 0.9405492258252994,
688
+ "grad_norm": 1.127655029296875,
689
+ "learning_rate": 4.347723927975417e-07,
690
+ "loss": 0.1662,
691
+ "step": 12878
692
+ },
693
+ {
694
+ "epoch": 0.9505550686532281,
695
+ "grad_norm": 0.9149182438850403,
696
+ "learning_rate": 3.01009272107991e-07,
697
+ "loss": 0.164,
698
+ "step": 13015
699
+ },
700
+ {
701
+ "epoch": 0.9605609114811569,
702
+ "grad_norm": 1.0919889211654663,
703
+ "learning_rate": 1.9164956299158322e-07,
704
+ "loss": 0.1723,
705
+ "step": 13152
706
+ },
707
+ {
708
+ "epoch": 0.9705667543090856,
709
+ "grad_norm": 2.5338237285614014,
710
+ "learning_rate": 1.0680131642176183e-07,
711
+ "loss": 0.1584,
712
+ "step": 13289
713
+ },
714
+ {
715
+ "epoch": 0.9805725971370143,
716
+ "grad_norm": 0.7331089377403259,
717
+ "learning_rate": 4.6548365244375446e-08,
718
+ "loss": 0.17,
719
+ "step": 13426
720
+ },
721
+ {
722
+ "epoch": 0.990578439964943,
723
+ "grad_norm": 1.282274603843689,
724
+ "learning_rate": 1.0950241348084422e-08,
725
+ "loss": 0.1564,
726
+ "step": 13563
727
+ },
728
+ {
729
+ "epoch": 1.0,
730
+ "eval_loss": 0.2237541824579239,
731
+ "eval_runtime": 366.8443,
732
+ "eval_samples_per_second": 31.452,
733
+ "eval_steps_per_second": 7.864,
734
+ "step": 13692
735
+ }
736
+ ],
737
+ "logging_steps": 137,
738
+ "max_steps": 13692,
739
+ "num_input_tokens_seen": 0,
740
+ "num_train_epochs": 1,
741
+ "save_steps": 3423,
742
+ "stateful_callbacks": {
743
+ "TrainerControl": {
744
+ "args": {
745
+ "should_epoch_stop": false,
746
+ "should_evaluate": false,
747
+ "should_log": false,
748
+ "should_save": true,
749
+ "should_training_stop": true
750
+ },
751
+ "attributes": {}
752
+ }
753
+ },
754
+ "total_flos": 2.405329205216464e+19,
755
+ "train_batch_size": 2,
756
+ "trial_name": null,
757
+ "trial_params": null
758
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f587753ccef3612b7d0f7899e81af61598b3e06ec3aaf4ff41332eed819d9e8
3
+ size 7416
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)