Update README.md
Browse files
README.md
CHANGED
@@ -98,6 +98,15 @@ The NeMo Audio Codec is trained on a total of 28.7k hrs of speech data from 105
|
|
98 |
- [MLS English](https://www.openslr.org/94/) - 15 hours, 42 speakers, English
|
99 |
- [Common Voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0) - 2 hours, 1356 speakers, 59 languages
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
## Software Integration
|
102 |
|
103 |
### Supported Hardware Microarchitecture Compatibility:
|
|
|
98 |
- [MLS English](https://www.openslr.org/94/) - 15 hours, 42 speakers, English
|
99 |
- [Common Voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0) - 2 hours, 1356 speakers, 59 languages
|
100 |
|
101 |
+
## Performance
|
102 |
+
|
103 |
+
We evaluate our codec using several objective audio quality metrics. We evaluate [ViSQO](https://github.com/google/visqol) and [PESQ](https://lightning.ai/docs/torchmetrics/stable/audio/perceptual_evaluation_speech_quality.html) for perception quality, [ESTOI](https://ieeexplore.ieee.org/document/7539284) for intelligbility, mel spectrogram and STFT distances for spectral reconstruction accuracy, and SI-SDR [7] for phase reconstruction accuracy. Metrics are reported on the test set for both the MLS English and CommonVoice data. The model has not been trained or evaluated on non-speech audio.
|
104 |
+
|
105 |
+
| Dataset | ViSQOL |PESQ |ESTOI |Mel Distance |STFT Distance|SI-SDR|
|
106 |
+
|:-----------:|:----------:|:----------:|:----------:|:-----------:|:-----------:|:-----------:|
|
107 |
+
| MLS English | 4.50 | 3.69 | 0.94 | 0.066 | 0.033 | 8.33 |
|
108 |
+
| CommonVoice | 4.53 | 3.55 | 0.93 | 0.100 | 0.057 | 7.63 |
|
109 |
+
|
110 |
## Software Integration
|
111 |
|
112 |
### Supported Hardware Microarchitecture Compatibility:
|